Course Catalog
$2012-2013$

NOTICES

Authorization

DigiPen Institute of Technology is authorized by the Washington Higher Education Coordinating Board (HECB) and meets the requirements and minimum educational standards established for degree-granting institutions under the Degree-Granting Institutions Act. This authorization is subject to periodic review and authorizes DigiPen Institute of Technology to offer the following degree programs: Bachelor of Arts in Game Design; Bachelor of Arts in Music and Sound Design; Bachelor of Fine Arts in Digital Arts and Animation; Bachelor of Science in Computer Engineering; Bachelor of Science in Computer Science in Real-Time Interactive Simulation; Bachelor of Science in Engineering and Sound Design; Bachelor of Science in Game Design; Master of Fine Arts in Digital Arts; and Master of Science in Computer Science. Authorization by the HECB does not carry with it an endorsement by the board of the institution or its programs. Any person desiring information about the requirements of the act or the applicability of those requirements to the institution may contact the HECB at P.O. Box 43430, Olympia, WA 98504-3430.
*DigiPen Institute of Technology has been authorized since 1996 and strictly adheres to the biennial authorization renewal process.

Basque Government Authorization

The creation and operation in the Basque Autonomous Community of establishments wishing to provide any modality of university-level education in line with valid, foreign educational systems and non-leading to qualifications officially recognized in Spain is regulated by the provisions of the Basque Government Decree 330/1999, dated September 21st. This Decree constitutes a development of the provisions contained in the University Act of the Autonomous Community of the Basque Country (Act 19/1998 dated June 29th), and the Royal Decree 557/1991 dated April 12th on the creation and official recognition of universities and university establishments -Spain's basic education law.

By Order of March 29, 2010, the Minister for Education, Universities and Research, officially approves the establishment and operation of the Centre called DigiPen Institute of Technology Europe-Bilbao SL, to provide studies leading to the award of Bachelor of Science in Real Time Interactive Simulation and Bachelor of Fine Arts in Production Animation, both degrees of DigiPen Institute of Technology, a Private Institute of Technology based in Redmond, Washington (USA), with effect from academic year 2010-2011.

Copyright Notice

Copyright © 2012 DigiPen (USA) Corp. and its owners. All Rights Reserved.

No parts of this publication may be copied or distributed, transmitted, transcribed, stored in a retrieval system, or translated into any human or computer language without the express written permission of DigiPen (USA) Corp., 9931 Willows Road NE, Redmond, WA 98052, USA.

Trademarks

DigiPen $®$ is a registered trademark of DigiPen (USA) Corp.
ProjectFUN® is a registered trademark of DigiPen (USA) Corp.
DigiPen Institute of Technology Europe-Bilbao \circledR^{\circledR} is a registered trademark of DigiPen (USA) Corp.

All other product names mentioned in this booklet are trademarks or registered trademarks of their respective companies and are hereby acknowledged.

Important Notices

All items including, but not limited to, application forms, transcripts, reference letters, resumes, software, and any accompanying documentation or works of art (collectively "the Items"), forwarded to DigiPen by any person (the "Sender") whether at the request of DigiPen or otherwise, become the exclusive property of DigiPen unless otherwise agreed to in writing by DigiPen, and the Institute* shall be under no obligation whatsoever to return the Items to the Sender. At DigiPen's discretion, the Items may be destroyed after being reviewed.

DigiPen Institute of Technology reserves the right to make changes to the curricula and calendar without any prior notice.

The course offerings and requirements of DigiPen Institute of Technology are under continual examination and revision. This catalog is not a contract; it merely presents the offerings and requirements in effect at the time of publication and in no way guarantees that the offerings and requirements will not change. The Institute specifically reserves the right to change requirements for any major during any particular year. The individual student assumes full responsibility for compliance with all current academic requirements. Current course offerings may be obtained from the Office of the Registrar. Current major and degree requirements may also be obtained from the Office of the Registrar. For the most current information, visit DigiPen's official course catalog online at www.digipen.es.

[^0]
CONTENTS

Rules and Policies
for the Academic Year 2012-2013 7
GENERAL INFORMATION 8
Name of the School 8
Contact Information 8
Degree Authorization 8
History of DigiPen Institute of Technology 8
Awards 9
Continuing Education Program 9
Pre-College Program 9
Youth Programs 9
Mission of Institution 10
Notice of Non-Discrimination 10
Programs of Study Offered 10
About DigiPen Europe-Bilbao's Facilities 10
Student Network and Internet Usage Policy 10
IMPORTANT DATES 12
Institutional Calendar 12
Deadlines 13
TUITION AND FEES 14
Enrollment Application Fee 14
Registration Fee 14
Tuition Fee Payment 14
Late Registration Fee 14
Books \& Supplies 14
Tuition 14
Administrative Fee 14
Technology Fee 14
Graduation Fee 14
Transfer and Waiver Fees 14
Course Fees 14
CANCELLATION AND REFUND POLICIES 2012-2013 15
Cancellation Policies 15
Tuition Refund Schedule. 15
Tuition Account Reimbursement. 15
Termination Date 15
Special Cases 15
Application of Policy 15
FINANCIAL ASSISTANCE 16
Institute-Specific Scholarships 16
Loans 16
APPLYING TO DIGIPEN 16
Visiting DigiPen. 16
Application Process 16
Personal Statement 16
Admission/Denial to DigiPen's Programs 17
Reapplication Information 17
Readmission Information 18
WAIVER CREDIT, AP EXAMINATIONS, CLEP, AND OTHER CREDIT 18
Course Waiver Examinations 18
Advanced Placement Examinations 19
College-Level Examination Program (CLEP) 20
Transfer Credit 20
Articulation Agreements 20
Credit Evaluation Forms 20
Transferability of Credits to Other Institutions. 20
Granting Credits for Work Experience 20
STANDARDS OF PROGRESS 21
Semester Credit Hour 21
Grading System 21
Grade Reports 22
Grade Point Average 22
Satisfactory Progress 22
Passing Classes and Graduation 23
Academic Warning 23
Grade Changes and Appeals 23
Repeating Courses 23
Course Overload 23
Attendance 24
Withdrawing from Individual Classes 24
Withdrawing from the Institute 24
Hardship Withdrawal 24
The "W" Grade 24
Dean's Honor List Requirements 24
Process for Grievances and Appeals 25
Transcripts 25
Exams 25
STUDENT INTERNSHIPS 25
Overview of Internships 25
Objectives of Internship Programs 25
CHANGE OF MAJOR AND GRADUATION 26
Requesting a Change of Major 26
Graduation Requirements 26
Applying for Graduation 26
Graduation Application Process 27
STUDENT AFFAIRS 27
Special Needs 27
Graduate Follow Up 27
EDUCATION RIGHTS AND PRIVACY OF STUDENT RECORDS 27
Release of Student Academic and Financial Records 28
Release of Student Directory Information. 28
"NO" to Release of Information 28
Change from "NO" to "YES" 28
REGULATION OF CONDUCT AND DISCIPLINARY PROCEDURES 28
Rules and Regulations 28
Penalties 30
Warnings 30
Procedures 30
Dismissal by the Institute. 30
Appeals 30
Degree Programs for the Academic Year 2012-2013 33
BACHELOR OF SCIENCE IN COMPUTER SCIENCE IN REAL-TIME INTERAC
TIVE SIMULATION 34
Program Overview 34
Degree Requirements 35
Recommended Course Sequence. 35
BACHELOR OF FINE ARTS IN DIGITAL ART AND ANIMATION 38
Program Overview 38
Digital Art and Animation Degree Requirements 38
Recommended Course Sequence 39
Course Descriptions
for the Academic Year 2012-2013 43
DEPARTMENT OF ANIMATION AND PRODUCTION 44
Animation Courses 44
Film Courses 44
Projects Courses 46
DEPARTMENT OF COMPUTER SCIENCE 47
Computer Science Courses 47
DEPARTMENT OF DIGITAL ARTS 51
Computer Graphics Courses 51
DEPARTMENT OF FINE ARTS 54
Art Courses 54
DEPARTMENT OF GAME SOFTWARE DESIGN AND PRODUCTION 58
Game Projects Courses 58
Game Design and Development Courses 59
DEPARTMENT OF HUMANITIES AND SOCIAL SCIENCES 60
Communications Courses 60
English Courses. 60
History Courses 61
Law Courses 62
Philosophy Courses 62
Psychology Courses 62
Social Sciences Courses 62
DEPARTMENT OF LIFE SCIENCES 63
Biology Courses. 63
DEPARTMENT OF MATHEMATICS 64
Mathematics Courses 64
DEPARTMENT OF PHYSICS 67
Physics Courses 67

Rules and Policies for the Academic Year 2012-2013

GENERAL INFORMATION

Name of the School

DigiPen Institute of Technology Europe-Bilbao

Contact Information

DigiPen Institute of Technology Europe-Bilbao
Virgen del Puerto 34, Edificio A
48508 Zierbena, Bizkaia
Spain
Telephone: 34-94 6365163
Email: info.es@digipen.es
Web: www.digipen.es

Degree Authorization

DigiPen Institute of Technology Europe-Bilbao has been permitted by the Basque Ministry of Education to establish its presence in the Basque Country as a foreign specialized institution.

DigiPen Europe-Bilbao offers the following degree programs for the 2012-2013 academic year: Bachelor of Science in Computer Science in Real-Time Interactive Simulation; Bachelor of Fine Arts in Digital Art and Animation

History of DigiPen Institute of Technology

DigiPen was founded in 1988 by Mr. Claude Comair as a computer simulation and animation company based in Vancouver, British Columbia, Canada. As the demand for production work increased, DigiPen faced difficulty finding qualified personnel, and in 1990, it began offering a dedicated training program in 3D computer animation to meet this growing need.

That same year, DigiPen approached Nintendo of America to jointly establish a post-secondary program in video game programming. The result of this collaborative effort was the DigiPen Applied Computer Graphics School, which in 1994, officially accepted its first class of video game programming students to its Vancouver campus for the two-year Diploma in the Art and Science of 2D and 3D Video Game Programming. In 1995, DigiPen implemented a revised two-year 3D computer animation program and graduated student cohorts over each of the following four years.

Around this time, the video game industry underwent a paradigm shift from dealing primarily with 2D graphics and gameplay to fully 3D worlds that players could freely explore. As these worlds became more sophisticated, so did the task of programming, designing, and animating them. In anticipation of this change, DigiPen developed a four-year bachelor's degree in video game programming (the Bachelor of Science
in Computer Science in Real-Time Interactive Simulation) that would prepare students for the challenges of creating complex 3D game and simulation software.

In 1996, the Washington State Higher Education Coordinating Board (HECB) granted DigiPen the authorization to award both Associate and Bachelor of Science degrees in RealTime Interactive Simulation. Two years later, in 1998, DigiPen Institute of Technology opened its campus in Redmond, Washington, USA. In 1999, DigiPen began offering the Associate of Applied Arts in 3D Computer Animation. At this time, DigiPen phased out its educational activities in Canada, moving all operations to its Redmond campus. On July 22, 2000, DigiPen held its first commencement ceremony, where it awarded Associate of Science and Bachelor of Science degrees.

In 2002, DigiPen received accreditation from the Accrediting Commission of Career Schools and Colleges (ACCSC). In 2004, DigiPen began offering three new degrees: the Bachelor of Science in Computer Engineering, the Master of Science in Computer Science*, and the Bachelor of Fine Arts in Digital Art and Animation. In 2008, DigiPen added two more degree programs: the Bachelor of Science in Game Design and the Bachelor of Arts in Game Design.

Also in 2008, DigiPen partnered with Singapore's Economic Development Board to open its first international branch campus, offering the following degrees: the Bachelor of Science in Computer Science in Real-Time Interactive Simulation, the Bachelor of Science in Game Design, the Bachelor of Fine Arts in Digital Art and Animation, and the Bachelor of Arts in Game Design. In 2010, DigiPen announced plans to open its first European campus in Bilbao, Spain.**

That same year, DigiPen relocated its US campus to its current location at 9931 Willows Road Northeast in Redmond, Washington. In addition to uniting DigiPen's BFA and BS programs under one roof, the larger campus provides more spaces for students to learn, meet, and collaborate on group projects.

On September 26, 2011, DigiPen launched DigiPen Institute of Technology Europe - Bilbao offering two bachelor's degree programs: Bachelor of Science in Computer Science in RealTime Interactive Simulation and Bachelor of Fine Arts degree in Digital Art and Animation, to forty students.

On October 11, 2011, DigiPen Singapore was granted accreditation by ACCSC as a branch campus of the main school located in Redmond, Washington, USA.
*ACCSC granted approval for this degree in 2006.
** DigiPen's international branch campus (DigiPen EuropeBilbao) does not fall within the scope of ACCSC accreditation.

Awards

DigiPen students have consistently excelled in both national and international game development competitions. At the annual Independent Games Festival (IGF) in San Francisco, California, DigiPen games have been nominated to the Student Showcase for the last 12 consecutive years. Out of 113 games recognized by the IGF as Student Showcase winners since 2001, 26 were created by DigiPen students - considerably more than that of any other school. In 2007, 2008, and 2009, DigiPen projects also won the coveted Best Student Game award (for Toblo, Synaesthete, and Tag: The Power of Paint, respectively). In the IGF Main Competition, five DigiPen student games have been nominated for awards in various professional categories, and in 2004 Bontago won the "Innovation in Game Design" award while competing against professional developers. In 2011, the Independent Games Festival China, part of the annual Game Developers Conference China, selected three DigiPen games for its Student Competition which honors six of the top regional student games. DigiPen Singapore student game Pixi won the "Excellent Student Winner" award, while DigiPen Singapore student game Void won the "Best Student Game" award, as well as the "Excellence in Technology" award in IGF China's Main Competition.

Other competition highlights for DigiPen students include five finalist positions at the Slamdance Guerrilla Gamemaker Competition with two of those games winning their award categories, wins at the Northwest Games Festival, the Intel Games Demo, the IndieCade International Festival of Independent Games, and the PAX 10, as well as wins at the Indie Game Challenge, which in 2010 awarded the \$100,000 nonprofessional Grand Prize to the DigiPen student game Gear and in 2012 gave the Gamer's Choice Award to the DigiPen game Nitronic Rush. In 2011 at the Tokyo Game Show, only two of the ten games showcased at the annual Sense of Wonder Night were from North America, with one of those, Solstice, being a DigiPen student project. Additionally, DigiPen students have won numerous awards at the Austin Game Developers Conference in Game Narrative Reviews and Poster Competitions.

Continuing Education Program

Authorized by the Washington Workforce Training Board to grant Continuing Education Units, DigiPen Institute of Technology offers a series of continuing education courses each semester and during the summer session. These courses are for individuals looking to explore the world of digital interactive entertainment production or to enhance their overall knowledge in game development topics such as programming, production art, and game design. Courses are taught at DigiPen's Redmond campus and some are also offered online. Please visit www.digipen.edu/academics/continuing-education/ for more information about specific courses offered, cost, admissions information, and registration.

Please note that the continuing education courses are not transferable to any of DigiPen's degree programs and do not fall within the scope of ACCSC accreditation.

Pre-College Program

DigiPen's Pre-College Program is a challenging four-week program for students who have completed either their sophomore, junior, or senior year of high school. This program is designed to provide a preparatory experience for high school students interested in a potential career in the field of game programming, production art, or game design. For students who have strong academic potential and who may be considering entering one of DigiPen's degree programs, this rigorous, fast-paced program will provide a true taste of the college experience at DigiPen. Taught by DigiPen's faculty, students will be exposed to college-level content, as well as gaining insight into the collaborative environment at DigiPen.

There are three tracks being offered in game programming, game art production, and game design. Students who successfully complete a DigiPen Pre-College Program will be eligible to receive non-matriculated college credit issued by DigiPen Institute of Technology and will have developed an understanding of the game development process as it relates to the respective tracks, knowledge as to the key types of academic subjects that a student must study to be successful, and practical experience with the challenges of game production. The Pre-College Program is currently offered at DigiPen's Redmond campus.

Youth Programs

In addition to its post-secondary degree programs, DigiPen offers opportunities for students entering grades 5 and higher to learn about video game development, 3D animation production, game design, music, visual effects, and robotics. DigiPen's ProjectFUN Youth Programs are committed to presenting a high quality education by engaging and challenging students through hands-on learning that support art, science, and math education workshops.

ProjectFUN Workshops

Now entering their 18th year, the ProjectFUN workshops engage middle and high school students in the arts and sciences by immersing them in the tools and techniques of today's high-tech careers. The workshops in Animation, Game Design, Video Game Programming, Multimedia Production, and Robotics enhance students' critical thinking skills, improve their knowledge of core subjects like math and physics, and excite their interest in the academic concepts underlying modern technology.

These workshops are taught at DigiPen's Redmond, WA, campus, DigiPen's branch campuses in Singapore and Spain, and various locations across the US and Canada. These workshops are also offered in a synchronous online environment year-round.

High School Technology Academies

In 2000, DigiPen began teaching a computer science program for junior and senior high school students who are interested in taking a challenging computer science program. There are currently Technology Academy sites in Washington and various other locations in the US and Canada, which teach Video Game Programming, 3D Animation, Robotics, and Media Communications. Starting Fall 2007, DigiPen began offering an online version of the Technology Academy to students in

Washington State. This online program now includes students from across the nation.

For more information about DigiPen's Youth Programs, visit projectfun.digipen.edu.

Mission of Institution

Our mission is to provide an exemplary education and to further research in digital media, simulation, and interactive computer technologies by teaching the academic fundamentals and applied theory necessary for our students to lead, innovate, and advance these industries. Through the work of our students, faculty and staff, we strive to empower and inspire these industries on a global level.

Building on a strong foundation rooted in academics and industry experience, we challenge our students to apply their knowledge towards the creation of real-world products for the ever-advancing demands of a technological society. Embracing teamwork and creative exploration, our mission is to produce highly qualified leaders and originators who will instigate growth, productivity, innovation, and success in their professions and industries.

Notice of Non-Discrimination

DigiPen Institute of Technology Europe-Bilbao is committed to maintaining a diverse community in an atmosphere of mutual respect and appreciation of differences. DigiPen Institute of Technology Europe-Bilbao does not discriminate in its educational and employment policies on the basis of race, color, creed, religion, national/ethnic origin, sex, sexual orientation, or age.

Programs of Study Offered

Currently, the Institute offers the following degree programs:

- Bachelor of Science in Computer Science in RealTime Interactive Simulation
- Bachelor of Fine Arts in Digital Art and Animation

About DigiPen Europe-Bilbao's Facilities

DigiPen Europe Bilbao has a modern facilities located at Virgen del Puerto 34, at the village of Zierbena. The building houses 17 rooms spread over 3 floors. They have different configurations and sizes and are equipped with audiovisual media (projectors, microphones, computers, Internet access, and Wi-Fi connection). Weekly student access to the DigiPen Bilbao campus is from 9:00 A.M. to 10:00 P.M., Monday through Friday, and from 10:00 A.M. to 6:00 P.M. on Saturday. Core office hours for administrative staff run from 9:00 A.M. to 10:00 P.M., Monday through Friday, and from 10:00 A.M. to 6:00 P.M. on Saturday. Major equipment items include microphones and LCD projection systems in many of the classrooms. The majority of the student computers currently range from Intel Core 7-960 3,2GHz, Quadcore with 8GB RAM to $7-9603,2 \mathrm{GHz}$, Quadcore with 12GB RAM. All computers are on internal network and have access to printers, servers, and archival media. DigiPen upgrades the computer equipment on a regular basis.

Internet Access

Internet access is a regulated service and is provided for students free of charge. Students may lose this privilege if they do not abide by the Student Network and Internet Usage Policy.

Student Network and Internet Usage Policy

General Policies

DigiPen's computer and network resources are provided exclusively for educational purposes. To ensure that these resources remain available for legitimate academic usage, DigiPen requires compliance with the following policies:

- Students are required to respect DigiPen property. Students may not abuse, damage, vandalize, steal, or in any way alter DigiPen property in any manner that would prevent another student from using it.
- Students may not install software, drivers, patches, or any other program on DigiPen computers. Additional software may be requested through an instructor; it is the sole responsibility of DigiPen to decide if, how, and when any software is installed.
- Students are responsible for their own data and are encouraged to protect their work by utilizing the resources provided by DigiPen and by using a personal storage device such as a flash drive or laptop computer.
- Students may not attempt to access another student's information or display any material which may offend another student.
- Students may not copy, publish, or make available any DigiPen property without written consent. This includes, but is not limited to, storing materials on any unauthorized network service or personal server.
- Commercial use of DigiPen computer or network resources is expressly and strictly forbidden. Any commercial activity will result in legal action against the offender.

DigiPen reserves the right to monitor, log, and inspect any data stored on any DigiPen computer or transmitted over the DigiPen network without restriction or limitation in order to ensure compliance with the above policies. Students found to be in violation of these policies may be restricted from DigiPen's network and subject to disciplinary action.

Internet Filter Policy

Internet access through DigiPen's network is filtered to ensure that students are better able to access information and materials related to their education. All internet traffic from within DigiPen's network, including labs, classrooms, and administrative offices, are sent through a system of proxies, filters, and analyzers to protect school resources from outside disruption, prevent network abuse, and prioritize legitimate educational usage. If you have any questions or concerns about this policy, or you would like to report a problem with internet access, contact helpdesk@digipen.edu.

Copyright Infringement and Peer-to-Peer

File Sharing

DigiPen prohibits copyright infringement in any form, including the illegal downloading and uploading of copyrighted works through peer-to-peer file sharing. Copyright may result in civil and criminal penalties, In addition to the civil and criminal penalties outlined above, students who engage in illegal downloading or unauthorized distribution of copyrighted materials using DigiPen's network will also be referred to DigiPen's Discipline Committee and be subject to disciplinary sanctions, up to and including suspension from the Institute, under the Regulation of Conduct and Disciplinary Procedures.

IMPORTANT DATES

Institutional Calendar

September 3, 2012	Orientation Day	
September 4, 2012	Classes Begin - Fall Semester	
October 12, 2012	Día del Pilar	No Classes - Labs Closed
October 25, 2012	Día del Estatuto	No Classes - Labs Closed
November 1, 2012	Todos los Santos	No Classes - Labs Closed
December 6, 2012	Día de la Constitución	No Classes - Labs Closed
December 8, 2012	La Inmaculada Concepción	No Classes - Labs Closed
December 10-14, 2012	Fall Semester Final Exams	
December 14, 2012	Fall Semester Ends	
December 15, 2012-January 6, 2013	Winter Break	No Classes - Labs Closed
January 2-6, 2013	Intersession	No Classes - Labs Closed
January 7, 2013	Classes Begin - Spring Semester	
February 3, 2013	Founder's Day	No Classes - Labs Closed
March 25-April 1, 2013	Spring Break - Easter Break	No Classes - Labs Closed (March 28-April 1
April 22-26, 2013	Spring Semester Final Exams	
April 26, 2013	Spring Semester End	
April 29-May 5, 2013.	Intersession	No Classes - Labs Closed
May 6, 2013	Classes Begin - Summer Session	
July 22-26, 2013	Summer Session Final Exams	
July 26, 2013	Summer Session Ends	

The Institute is closed on all statutory holidays. Exam periods and breaks may be subject to change. The laboratory facilities may be closed for a period of two consecutive days per month for maintenance. It is usually the last two working days of the month unless otherwise posted. Enrollment occurs once a year, in September.

Deadlines

July 1, 2012	Tuition deposit due for Fall 2012 semester
July 9, 2012	Last day to submit Request for Change of Major for Fall 2012 Semester Last day to submit Application for Readmission for Fall 2012 Semester
August 1, 2012	Tuition balance due for Fall 2012 Semester
September 10, 2012	Last day to drop Fall 2012 Semester courses for 100\% refund Last day to add classes for Fall 2012 Semester
September 14, 2012	Final day to drop classes without academic penalty
October 3, 2012	Withdrawal deadline for 50% refund
October 25, 2012	Final day to receive a "W" on transcript for Fall 2012 Semester withdrawals. Withdrawals from the Institute after this date will receive " F " grades on transcript Final day to drop a class
November 26, 2012	Last day to submit Request for Change of Major for Spring 2013 Semester Last day to submit Application for Readmission for Spring 2013 Semester
December 1, 2012	Tuition deposit due for Spring 2013
January 13, 2013	Last day to drop Spring 2013 Semester courses for 100\% refund Last day to add classes for Spring 2013 Semester
January 18, 2013	Final day to drop classes without academic penalty
February 5, 2013	Withdrawal deadline for 50% refund
February 27, 2013	Final day to receive a "W" on transcript for Spring 2013 Semester withdrawals. Withdrawals from the institute after this date will receive "F" grades on transcript Final day to drop a class
April 8, 2013	Last date to submit Request for Change of Major for Summer 2013 session Last day to submit Application for Readmission for Summer 2013 session
May 2, 2013	Tuition Balance due for Summer 2013 Session
May 12, 2013	Last day to drop Summer 2013 Session courses for 100\% refund Last day to add classes for Summer 2013 Session Automatic Withdrawal date from classes missing pre-requisites
May 17, 2013	Final day to drop classes without academic penalty
June 4, 2013	Last day to receive 50\% Summer 2013 tuition refund
June 26, 2013	Final day to receive a "W" on transcript for Summer 2013 Session withdrawals. Withdrawals from the Institute after this date will receive "F" grades on transcript Final day to drop a class
July 1, 2013	Tuition deposit due for Fall 2013 semester
July 8, 2013	Last day to submit Request for Change of Major for Fall 2013 Semester Last day to submit Application for Readmission for Fall 2013 Semester
August 1, 2013	Tuition balance due for Fall 2013 Semester
September 9, 2013	Last day to drop Fall 2013 Semester courses for 100\% refund
July 1, 2013	Tuition deposit due for Fall 2013 Semester
July 8, 2013	Last day to submit Request for Change of Major for Fall 2013 Semester Last day to submit Application for Readmission for Fall 2013 Semester
August 1, 2013	Tuition balance due for Fall 2013 Semester
September 9, 2013	Last day to drop Fall 2013 Semester courses for 100\% refund

TUITION AND FEES

All tuition and fees are in euros.

Enrollment Application Fee

There is a $200 €$ application fee. The application fee is refundable if the applicant is not accepted to the Institute or if the applicant requests a refund within three days after submitting the application fee and cancels his or her application.

Registration Fee

Upon acceptance into a degree program, a $150 €$ registration fee must be paid to confirm enrollment. If a student cancels his or her enrollment, he or she may request a refund of the registration fee within three days after signing the enrollment agreement and making an initial payment.

Tuition Fee Payment

Please see the payment schedule in the Student Enrollment Agreement for dates and amounts due. The payment of tuition and all associated fees is the sole responsibility and obligation of the registering student. Tuition increases will be announced six months before taking effect.

Late Registration Fee

Students are responsible for registering for courses and reregistering for courses that need to be retaken each semester by the posted date. All late class registrations will cost an additional $100 €$ to cover administrative fees.

Books \& Supplies

Text and reference books are estimated to be approximately $900 €$ per year. This cost is not included as a part of the tuition.

Tuition

The flat-rate structure at DigiPen Europe-Bilbao is based on a semester basis. The tuition costs below are for full-time students (those students taking a minimum of 16 credits or more during each of the fall and spring semesters). In order for a student to complete the degree program in the typical four years, he or she must take an average of 16-20 credits per semester.

No. of Credits	EU	Non-EU
16 or more credits	$13.500 €^{*}$ per year	$18.000 €^{*}$ per year

[^1]
Administrative Fee

This fee covers a limited number of transcript requests, add/ drop requests, enrollment verifications, and re-registrations. This fee is $50 €$ per semester for all students.

Technology Fee

This fee covers supplies and maintenance costs for the students' use of equipment and upkeep of the computer labs. This fee is $50 €$ per semester for all students.

Graduation Fee

This $75 €$ fee covers the cost of processing the graduation application. This fee must accompany the graduation application.

Transfer and Waiver Fees

Course transfers and waivers are processed at $25 €$ per credit.

Course Fees

Some courses may require lab or material fees. Please refer to course descriptions on course registration forms.

CANCELLATION AND REFUND POLICIES 2012-2013

Cancellation Policies

- All monies paid by an applicant who withdraws will be refunded if requested within three days after signing an enrollment agreement and making an initial payment.
- An applicant requesting cancellation more than three days after signing an enrollment agreement and making an initial payment, but prior to entering the school, is entitled to a refund of all monies paid minus a registration fee of 15% of the contract price of the program. However, in no event will the school retain more than $150 €$

Tuition Refund Schedule

A student who drops a course, who submits an official withdrawal in writing, or who is determined by the Administration to have withdrawn from the institute shall be refunded as follows:

- Before the close of the seventh calendar day from the beginning of the semester: Students receive a 100% tuition refund.
- Before the close of the eighth calendar day through the thirtieth calendar day from the beginning of the semester: Students receive a 50% tuition refund.
- After the thirtieth calendar day from the beginning of the semester: Students are required to pay 100% of the tuition and no refund is available.

Except for the registration fee, all other assessed fees are refunded on the same schedule as tuition payments.

Tuition Account Reimbursement

Reimbursement Requests

Any credit balance left on a student account is applied to future charges unless the student requests a reimbursement check by signing a Reimbursement Request Form.

Reimbursement Check

A reimbursement check is made payable to the student, unless otherwise instructed by the student on the Reimbursement Request Form. A reimbursement check may be picked up from the Accounting Office or mailed to the address specified on the Reimbursement Request Form. A reimbursement check may be issued within two to four weeks from the date the request was received or the credit balance appeared on the student account, whichever is later.

Inactive Student Accounts

Any credit balance left on a student account that becomes inactive through graduation, withdrawal, or any other event is automatically reimbursed to the student within 60 days of the account's change of status. A reimbursement check is made
to the student and mailed to the student's last-known billing address.

Termination Date

For refund purposes, the termination date for institutional withdrawal is the last date of actual attendance at the Institute by the student or the date of determination in accordance with the Institute's withdrawal policy. Similarly, the termination date for withdrawal from individual classes is the date of receipt of the appropriate withdrawal form. Notice of cancellation or withdrawal should be given by completing the appropriate withdrawal form, whether it is withdrawal from the Institute or from specific classes for which the student registered.

If the student's account remains delinquent for over 30 days, the Institute reserves the right to cancel the student's registration.

Special Cases

In the documented event of prolonged illness or accident, death in the family, or other special circumstances that make it impractical to complete the program in which the student is enrolled, the Institute shall make a settlement that is reasonable and fair to both parties. These will be determined on a case-by-case basis.

Application of Policy

Any monies due to the student shall be refunded within 60 days from the last date of the student's attendance or within 60 days from the date of receipt of payment, in the event that the date of such receipt is after the student's last date of attendance.

If a student's financial obligation is not fulfilled, the Institute is authorized to do the following until the owed monies are paid:

- Withhold the release of the student's academic records or any information based upon the records.
- Withhold the issuance of the student's transcripts.

DigiPen's Institutional Refund Policy operates independently from the Return of Title IV Funds Policy required for the Title IV federal student aid recipients.

FINANCIAL ASSISTANCE

Institute-Specific Scholarships

DigiPen Institute of Technology Europe-Bilbao offers a limited number of need- and merit-based scholarships.

For more information, please visit www.digipen.es.

Loans

DigiPen Institute of Technology Europe-Bilbao has arranged agreements with a select number of local banks for students to acquire student loans. Interested students should contact the banks directly for details, but may find a list of available options by contacting the Administration Office or by visiting the website (www.digipen.es).

APPLYING TO DIGIPEN

Visiting DigiPen

DigiPen offers regular information sessions for the general public. Anyone interested in finding out more about DigiPen Institute of Technology Europe-Bilbao and its programs is welcome to attend. For information on dates and times for these information sessions, please visit our website at www.digipen.es or email admissions.es@digipen.es.

Visitors interested in learning about DigiPen's admission requirements, application process, and degree programs are encouraged to schedule a one-on-one meeting and school tour with an admissions representative. To schedule an appointment, please contact the Office of Admissions at admissions.es@digipen.es preferably one week before your intended visit.

Application Process

DigiPen Institute of Technology works on a rolling admissions basis and only enrolls new students for the fall semester that begins each September. DigiPen will evaluate applications as they are completed and submitted.

Applicants normally receive a decision within two to four weeks after their application has been completed. DigiPen encourages new applicants to apply during the first quarter of each calendar year, but the Institute will continue to accept qualified applicants after that date until all programs have reached their maximum enrollment.

Applicants should submit all application materials within four weeks of their initial application submission. Applicants who need additional time should request an extension, after submitting their initial application, by contacting the Office of Admissions atadmissions.es@digipen.es.

Except where noted, all applicants must submit the following for consideration:

1. DigiPen Institute of Technology Europe-Bilbao's Online Application for Admission. All applications will be given equal consideration; however, submitting applications online is the preferred method.
2. A $200 €$ application fee.
3. Certified true copies of transcripts from all high schools or secondary/post-secondary institutions attended. Applicants must have completed at least a high school diploma or recognized equivalency certificate. These must be accompanied by English translations if the originals are in any other language besides English or Spanish.
4. Personal statement. Please see the Personal Statement section below for the requirements and recommendations about completing this important component of the application.
5. Letters of recommendation (optional). Two letters of recommendation from individuals familiar with your academic background and/or work ethic, e.g., an instructor, guidance counselor, or employer. Recommendation letters from family members will not be considered. Each letter MUST be sealed, signed, and dated by the author, and each must contain a contact phone number. Please download the recommendation letter templates online at https:// management.digipen.edu/es-srs-app/ or contact the Office of Admissions at 944706400 for copies to be mailed to you.
6. Official scores for the Selectividad. Applicants from outside of Spain may submit scores for the SAT I and should contact the Office of Admissions.
7. Proof of Proficiency in the English Language if English is not the Applicant's first language. See below for further details.
8. Other official documentation (when applicable). This includes, but is not limited to, SAT scores, certified transcripts from all institutions of tertiary education (e.g., university transcripts), and other information as requested by the Office of Admissions.
9. Art portfolio. This is only required of applicants to the Digital Art and Animation (BFA) degree program. Please see the Portfolio section below for complete details about this important component of the application.

Personal Statement

Your personal statement is an important part of your application for admission to DigiPen Institute of Technology. What you write will help us find out information about you that is not apparent from your application or transcripts.

Topics

Please address the following four topics in your personal statement:

1. Discuss your reasons for applying to DigiPen and explain how these reasons relate to your future goals (personal, education, and professional).
2. Teachers can inspire us to do great things. Tell us about a great teacher and what you learned through
his or her example or inspiration. You may discuss a schoolteacher, coach, mentor, or someone who taught you something without even realizing it.
3. Critique a piece of work. In less than 500 words, fully describe a game or a piece of artwork (painting, drawing, sculpture, film, etc.) that you disliked. Explain in detail why you disliked it and what you would have done to improve it. Focus on a few key areas, and be specific about your improvements.
4. Optional essay. Use this optional essay to explain any unusual circumstances or situations that you think may have an impact on your application.

Guidelines for the Personal Statement:

Please consider the following:

- Spelling, grammar, and content will be considered, so proofread your personal statement carefully.
- Except where noted, each question should be answered in no less than 150 words and in no more than 300 words.
- Applicants may answer each question individually or all together in full essay form

Submission

Applicants may choose to type the answers to the personal statement directly into the online application (in which case, there is an electronic signature and date stamp) or to mail a hardcopy to DigiPen's Office of Admissions where it will be added to the applicant's file. Those who opt for online submission of the personal statement should be sure to have their answers drafted and prepared before beginning the online application.

Formatting for Hardcopy Submission

Please adhere to the following requirements if submitting the personal statement in hardcopy format:

- Applicant's name and program to which s/he is applying should be printed at the top of each page
- Each page should be typed and double-spaced.
- The completed personal statement should be signed and dated on the last page.

Mathematics Requirements for CSRTIS

Applicants:

In addition to meeting the regular admissions requirements, all applicants to DigiPen Europe-Bilbao's BS in Computer Science in Real-Time Interactive Simulation (CSRTIS) program must have completed Bachillerato with 7 average in mathematics, including a minimum of Algebra, Geometry, and (when possible) Calculus. Relevant courses in Physics, Chemistry, and Computer Science will also be considered in the evaluation process.DigiPen Institute of Technology's Online Application for Admission.

Admission/Denial to DigiPen's Programs

DigiPen considers every part of an applicant's materials and qualifications when evaluating him or her for admission. Meeting the minimum standards is not a guarantee for admission. Applicants who exceed the minimum standards are more likely to be admitted. Accepted applicants will receive an enrollment packet via standard mail. This packet will include a student enrollment agreement and, if applicable, a request to furnish proof of high school graduation before the start of classes in the fall. By returning the signed enrollment agreement, proof of graduation, and the enrollment fee, an applicant has confirmed enrollment. Applicants who are accepted and enroll are required to attend an official orientation session prior to the start of the program. Applicants who are not accepted to the Institute will receive a letter of denial by mail. If an applicant is denied admission to a degree program, the application fee will be refunded. When possible, DigiPen will attempt to provide information about the specific areas in which an applicant needs improvement if he or she wishes to reapply in subsequent years. Please see the section on reapplying for more information.

Reapplication Information

Applicants who are denied admission are encouraged to reapply for a future year. By improving the areas suggested on the original decision letters (i.e. improving grades by taking additional course work, devoting more time and energy to a new art portfolio, etc.), many of those individuals re-applying for admission are accepted.

To re-apply, applicants should submit a new application form and indicate that they have applied previously for admission. The Office of Admissions retains all materials submitted by applicants for a period of five years. Therefore, items such as transcripts, letters of recommendations (optional for applicants to DigiPen's undergraduate degree programs), and test scores can be transferred from an applicant's original file to the new application file.

- Students who are re-applying need to supply the following materials only:
- New application form. Please submit online.
- $50 €$ application fee.
- Any new or updated documents, such as new transcripts, new test scores, etc.
- A short essay describing the progress and improvements that the applicant has made in the areas recommended in the original decision letter.
- After submitting their new application, readmission applicants are encouraged to contact the Office of Admissions by email at admissions.es@digipen.es to confirm whether any additional materials are needed for the completion of their application.

Readmission Information

Any student who wishes to return to DigiPen after an absence may apply to do so by completing a Readmission Application and submitting a non-refundable application fee, certified true copies of transcripts from all institutions attended since last attending DigiPen, and other official documentation for specific circumstances as requested below:

Medical Withdrawals

A physician's statement must be included, and it must indicate that you are ready to resume your studies. Additionally, it should describe any special needs you may require upon your return to the Institute.

Readmission after Academic Dismissal

A statement explaining what you have been doing since you last attended the Institute, why you would like to return, and how you plan to be successful by returning should be submitted as part of your application for readmission.

Readmission after Disciplinary Action

Please include a formal appeal for the Disciplinary Committee to review along with your application for readmission. You must receive clearance from the Disciplinary Committee to return.

Readmission for Personal Reasons

There are usually no impediments to returning to the Institute if there is space available; however, an academic plan may need to be developed with your advisor upon re-enrollment, and students requesting readmission after an extended period of time must meet with an academic advisor to determine the viability of completing their degree program.

Readmission after Non-Payment of Account

You must settle your account before applying for readmission. Once you have settled your account, then the readmission policy follows the same guidelines as being readmitted for personal reasons.

Exceptions to these requirements will only be made on a case-by-case basis at the discretion of the DigiPen Administration.

Transcripts of Non-DigiPen Coursework

In compliance with the Higher Education Authorization Act, any student whose absence from the Institute is required by reason of service in the uniformed services shall be entitled to readmission to the Institute if the student (or an appropriate officer of the Armed Forces or official of the Department of Defense) gives advance written or verbal notice of such service to the Registrar's Office. This is provided that the cumulative length of the absence and of all previous absences from the Institute, by reason of service in the uniformed services, does not exceed five years, and, except as otherwise provided in this section, the student submits a notification of intent to reenroll in the Institute.

WAIVER CREDIT, AP EXAMINATIONS, CLEP, AND OTHER CREDIT

Students may apply for course waivers if they can demonstrate that their knowledge and skills - whether they were gained by formal education, exam, work experience, or life experience are equivalent to those gained by courses offered at DigiPen Institute of Technology Europe-Bilbao. Credit may be granted through other means: Advanced Placement (AP) Exam scores, International Baccalaureate courses, College-Level Examination Program (CLEP) subject exam scores, or transfer credits from other post-secondary institutions. A maximum of nine credits per semester may be earned by these means. For undergraduate programs, no less than 75% of a student's total program must be taken at DigiPen. Course transfers and waivers are processed at $25 €$ per credit.

Course Waiver Examinations

Students may meet an academic requirement, within specified limits, by passing a waiver examination at least equal in scope and difficulty to a final examination in a course. Successful completion of the examination waives the curricular requirement for a specific course but does not result in credit earned. Waiver credits will not reduce the total number of semester hours required for a degree; however, they will increase the available number of elective hours for a degree. Waiver examinations must be taken prior to the final semester of residence at DigiPen Europe-Bilbao, and they may not be repeated.

Students have the opportunity to waive designated core courses by demonstrating mastery of the material in two steps:

1. A waiver petition to the respective department, indicating prior academic coursework and relevant work experience in the subject area; and
2. Performance on a placement exam offered by the respective department at the beginning of each term.

To petition waiving a core course, the student must complete a waiver request for each course, submit a transcript or photocopy of transcript with relevant coursework highlighted, and submit the requests to the Office of the Registrar. Waiver requests may be completed online through the SRS system. Once submitted, approval of waiver requests are decided by the department appropriate to the courses. For waiver requests received by July 1, students will receive notification by August 1. Waiver requests arriving in the Office of the Registrar after July 1 will be handled on a rolling basis, as faculty schedules allow. Results of waiver requests received after the deadline are not guaranteed to be available before the start of classes.

It is not possible to predict the results of faculty review of core course waiver requests. Core courses generally include intermediate-level material, so a student who has completed only introductory work in a subject is not likely to be granted a waiver. Faculty take many factors into consideration, including the academic caliber of the school where the course was
taken, the difficulty of the text, the grade received, and the time elapsed since completion of the course.

The following restrictions apply to all waiver examinations:.

1. A student must have an approved waiver request on file before credit by examination can be recorded on the permanent record.
2. A student must be currently enrolled before a waiver examination can be recorded on the permanent record.
3. A maximum of 15 semester hours may be waived toward a bachelor degree.
4. Examinations may not be repeated.
5. Repeat course work and "F" grades are not open to waiver requests.
6. Students may not take waiver examinations on courses they have audited.

Advanced Placement Examinations

Course waivers or credit may be granted for satisfactory achievement on Advanced Placement Exams of the College Entrance Examination Board taken within the last ten years.
An exam score of four or above earns from three to six course waiver credit hours. No grades will be assigned to the courses, nor will they be figured into a student's grade point average. Courses waived or transferred are entered on students' transcripts, but no grades or quality points are awarded. Official results must be sent to the Registrar before course waivers or transfers are granted. A maximum of two courses may be waived or transferred through AP examinations, and these may be applied to satisfy DigiPen's degree requirements. The examinations and the courses for which waiver hours or credit are granted are listed below. Waivers/credit granted for a specific course count toward the satisfaction of any requirement toward which the listed course counts.

AP Exam	Minimum Score	DigiPen Course
Art - History of Art	4	ART 210
English - Literature and Composition	4	ENG 110
English - Language and Composition	4	ENG 110
History - World History	4	HIS 100
Japanese	4	JPN 101
Mathematics - Calculus AB	4	MAT 150
Mathematics - Calculus BC	4	MAT 150
Physics B - Physics (Introduction)	4	PHY 115
Physics C - Physics (Mechanical)	4	PHY 200
Psychology	4	PSY 101

International Baccalaureate (IB)

In general, three semester credit hours are waived for each Higher Level subject in which a score of five or greater was earned in the last ten years. The IB courses and scores listed below are eligible for waiver hours at DigiPen..

Course \& Level	Score
English (A1 \& A2) -HL	$5,6,7$

College-Level Examination Program (CLEP)
 There are two types of CLEP examinations: General and

 Subject. DigiPen Europe-Bilbao grants credit or course waivers for Subject Examinations only, and credit will be given only in those areas in which comparable courses are offered at the Institute. Courses waived or transferred are entered on students' transcripts, but no grades or quality points are awarded. These exams may not be repeated. Examination must be taken prior to the student's completion of a total of 40 hours of college credit, and official results must be sent to the Office of the Registrar.CLEP offers a number of subject-matter examinations. Students obtaining the percentiles established by the mathematics, computer science, and humanities and social sciences departments will receive credit toward those basic requirements. Students wishing credit in courses other than those listed above should consult the appropriate departmental chair. DigiPen Europe-Bilbao will grant credit to students who pass the CLEP Subject Examinations approved by the department appropriate to the examination. The score necessary to receive credit through a Subject Examination will be the mean score achieved by C students in the national norms sample. The appropriate department will determine the number of course credits to be given for passing a Subject Examination.

Students should check with the College Board at www.collegeboard.org for further details and information concerning test centers and dates.

Transfer Credit

Credit earned by examination at other colleges or universities in the last ten years may be transferred, provided such credit meets the guidelines used by DigiPen Institute of Technology Europe-Bilbao. The Registrar will evaluate college credits earned elsewhere with respect to graduation requirements at DigiPen Europe-Bilbao. Developmental classes, orientation classes, or classes in which a student receives a "Pass" are not eligible for transfer credit consideration. Courses transferred or waived are entered on transcripts, but no grades or quality points are awarded. Transfer credit may be accepted subject to the following conditions and restrictions::

1. The course(s) offered for transfer must be taken at an accredited institution, and these courses must appear on official transcripts from the institution.
2. The course(s) must be comparable in academic quality to DigiPen courses; transfer credit will be
denied for courses not meeting this standard. Accordingly, current students are strongly urged to seek transfer approval from their advisor and the Registrar using the form provided for this purpose prior to enrollment in any course for which transfer approval might be sought.
3. Transfer credit will be considered for courses in which the grade of " $\mathrm{B}-$ " or better is recorded.
4. Courses transferred to a student's major may also require a validation examination in order to be accepted.
5. "Credit" or "Pass" grades will not be accepted for transfer.

If a course is accepted for credit, it will be counted as a transfer credit. No grade points from such transfer courses will be calculated in the DigiPen Europe-Bilbao grade point average. However, grades transferred for courses taken in residence at institutions with which DigiPen has direct, formal institutional exchange agreements are exempt from this policy and will be recorded. Courses transferred in may not be used to substitute improved grades for passing grades earned at DigiPen Europe-Bilbao.

Articulation Agreements

Credits from a college with an articulation agreement with DigiPen Institute of Technology Europe-Bilbao will be accepted, and grades earned will be included in students' DigiPen transcripts. Please contact the Registrar for a list of colleges with articulation agreements.

Credit Evaluation Forms

Application forms for challenge and waiver examinations may be obtained from the Registrar or online. A student must have approval for an exam prior to taking it.

Transferability of Credits to Other Institutions

A student wishing to transfer DigiPen credits to another iA student wishing to transfer DigiPen Europe-Bilbao credits to another institution may request the Institute to furnish transcripts and other documents necessary to a receiving institution. The Institute advises all prospective students that the courses and credits reflected on their transcript may or may not be accepted by a receiving institution. Students should inquire with the specific receiving institution about the transferability of DigiPen credits.

Granting Credits for Work Experience

DigiPen Europe-Bilbao does not grant credit for work experience.

STANDARDS OF PROGRESS

Semester Credit Hour

The semester credit hour is the basic unit of credit awarded at the Institute. The academic value of each course is stated in semester hour credits. As a rule, one semester credit hour of academic credit is given for at least 15 hours of classroom contact, at least 30 hours of supervised laboratory time, at least 30 hours of documented independent study activities, or at least 45 hours of internship or work-related experience. In addition, undergraduate students typically will be expected to spend two hours in preparation outside of class for each hour of lecture. Additional outside work may be required for laboratory or studio classes. During the summer session, the student earns semester credit hours for class contact hours that are equivalent to those provided in the fall and spring semesters. Whenever "semester hour" is used in this Catalog, it is synonymous with "semester credit hour" (SCH). A classroom contact hour is 53 minutes in length.

Grading System

The following grading system is in use and, except where otherwise specified, applies to both examinations and term work. The weight of a final examination grade is a matter individually determined by each instructor. See the following Grade Point Average section for additional information.

Grade	Description	Quality Points	Explanation of Minimum Grade Requirement
A	Excellent	4.0	
A-	Excellent	3.7	
B+	Good	3.3	
B	Good	3.0	
B-	Good	2.7	
C+	Fair	2.3	minimum grade required to earn credit for graduate students
C	Fair	2.0	minimum grade required to earn credit for undergraduate students to earn credit
C-	Fair	1.7	minimum grade required for undergraduate students to earn credit in non-core courses for their majors
D	Poor	1.0	
F	Failure	0	

The following grades do not affect the GPA:

AU - Audit

Indicates that the student attended the course without expectation of receiving credit or a grade.

IP - In Progress

Indicates that the grade was not available from the instructor at the time the transcript was printed.

I- Incomplete

This grade is used when circumstances beyond a student's control prohibit the student from taking the final exam or completing course work. It is not a grade given to students who need to retake a course because the student has fallen substantially behind. Students will not be given an "I" grade for unacceptable reasons, including, but not limited to, the need to rewrite a paper, the demands of a time-consuming job, the desire to leave town for a vacation or family gathering, the desire to do well on tests in other courses, etc. Students who want to repeat a course can drop it prior to the end of the eighth week of classes, and they will receive a "W" (see "Withdrawal" below). Otherwise, the instructor will assign the appropriate final grade ("D" or "F," for example).

Arrangements for the "I" grade and its completion must be initiated by the student and agreed to by the instructor. An Assignment of Final Grade for Completion of an Incomplete (I) Form must be completed each time a grade of " l " is assigned. On the form, the instructor will specify to both the student and the department the work remaining to be done, the procedures for its completion, the grade in the course to date, and the weight to be assigned to work remaining to be done when the final grade is computed.

If make-up work requires classroom or laboratory attendance in a subsequent term, the students should not register for the course again; instead, the student must audit the course and pay audit fees. If the make-up work does not require classroom or laboratory attendance, the instructor and student should decide on an appropriate plan and a deadline for completing the course. When the student completes the course, the instructor will submit a change of grade to the Registrar's Office. Should the work not be completed within the agreed upon time frame, the Institute will assign a grade of "F."

These procedures cannot be used to repeat a course for a different grade. An "I" grade will not be assigned to a student who never attended class; instead, instructors may assign a failing grade.

W - Withdrawal

Indicates withdrawal from the course before the end of the eighth week of classes or withdrawal from the Institute. The grade of " W " will not be assigned to any student who has taken the final examination in the course. An instructor may not withdraw a student from a course.

P-Pass

Given for internship, seminar, and thesis courses.

Assessment Process

DigiPen has an assessment process to evaluate the defined student learning outcomes of the education and training and established competencies. This process includes a combination of methods such as grading, portfolio assessment, projects, externships, and criterion referenced testing based on developed and appropriate rubrics.

DigiPen requires that each course syllabus contain clearly defined course objectives and learning outcomes, course requirements, grading policy and allotment, and grading distribution. Students are made aware of the grading policy, performance standards, and grading distribution at the beginning of each course. The faculty measures the student's achievement of the stated course objectives and learning outcomes based on the grading policy published in the course syllabus.

Grade Reports

Reports of the final grade in each course will be made available online to students soon after the close of each semester. However, grade reports may be withheld from students who have delinquent accounts with the Administration Office, Security, or Library.

Grade Point Average

The academic standing of each student is determined on the basis of the grade point average (GPA) earned each semester. The GPA is determined by using the quality points assigned to each course grade a student earns. The quality point value for each grade earned during a semester is multiplied by the number of credit hours assigned to that course as listed elsewhere in this catalog. The sum of these points is the total number of quality points earned during the semester. This sum is divided by the number of credit hours attempted (hours from courses with grades of " A " through " F ") to obtain the GPA.

The cumulative GPA consists of all courses completed at DigiPen. If multiple attempts were made for the same course, only the grades earned in the two most recently completed attempts are calculated in the cumulative GPA. Course grades of "AU," "I," "W," "S," "U," and "P" are non-punitive grades, so they are not calculated in the overall GPA since they carry no quality points.

The following example will help you calculate your grade point average:

Course	Credits	Grade	Points
CS 100	3	A	$12.0(3 \times 4.0)$
CS 100L	1	A	$4.0(1 \times 4.0)$
MAT 100	4	A-	$14.8(4 \times 3.7)$
CS 105	3	B	$9.0(3 \times 3.0)$
ENG 110	3	D	$3.0(3 \times 1.0)$
CS 120	3	B+	$9.9(3 \times 3.3)$
CS 120L	1	A-	$3.7(1 \times 3.7)$
Totals	$\mathbf{1 8}$		$\mathbf{5 6 . 4}$

Total grade points divided by total credits equals the cumulative grade point average. Therefore, the grade point average for the above example is 56.4 divided by 18 for a 3.13 GPA.

Satisfactory Progress

Satisfactory progress toward a degree by a full-time student is defined as a full attempt of 24 credits during an academic year. This should include registration for at least 12 credits per semester and successful completion of at least 12 credits per semester. "Full attempt" is defined as the receipt of a final letter grade ("A" to "F") but not the receipt of a "W" or an "I." Successful completion is defined as the receipt of a passing letter grade ("A" to "C-" in a degree's core courses, and "A" to " D " in non-major courses). Core courses and non-major courses are denoted under each individual degree program's recommended sequence of required classes chart. The Registrar makes decisions on student status.

A program of study must be completed within a reasonable period of time for a student to be eligible for graduation; that is, the credit hours attempted cannot exceed 1.5 times the credit hours or more than 1.5 times the recommended time required to complete the program. The Registrar will withdraw from the Institute full-time students who do not complete their studies during this time frame.

To maintain satisfactory progress, undergraduate students must attain a minimum cumulative grade point average at

Milestone	Minimum GPA Requirement
Up to $\mathbf{5 0 \%}$ of program $\mathbf{7 6}$ attempted credits for BSCS $\mathbf{7 2}$ attempted credits for BFA*	1.8 or better cumulative GPA
Over $\mathbf{5 0 \%}$ of program $\mathbf{7 7 - 1 5 3}$ attempted credits for BSCS $\mathbf{7 3 - 1 4 3}$ attempted credits for BFA*	2.0 or better cumulative GPA
$\mathbf{1 0 0 \%}$ of program	
$\mathbf{1 5 4}$ attempted credits or greater for BSCS	
$\mathbf{1 4 4}$ attempted credits or greater for BFA*	

* An attempted credit is defined as any credit that is awarded a final letter grade ("A" to "F"). Credits earning a "W" or "l" are not considered attempted credits..

Appeals

Appeals involving extenuating circumstances may be addressed respective Department Chair for action and resolution.

Passing Classes and Graduation

All students must have a cumulative GPA of at least 2.0 to graduate.

Academic Warning

Students who fail to maintain the required minimum cumulative GPA or who fail to complete their academic program within the maximum attempted credits allowed will be placed on Academic Warning.

Failing to Meet Minimum GPA Requirement

Students who fail to maintain the required minimum cumulative Grade Point Average (GPA) will be placed on Academic Warning the semester following the one where their cumulative GPA falls below the minimum required GPA. Students are removed from Academic Warning as soon as their cumulative GPA is above the minimum required GPA. Students who earn a 2.0 during the semester while they are placed on Academic Warning but do not raise their cumulative GPA above the minimum requirement will continue on Academic Warning until their cumulative average meets the minimum requirement. While on Academic Warning, students may be restricted to a maximum course load of 15 credits of which 50% must be core courses as defined in the course catalog. These students must achieve a GPA of 2.0 or higher during the semester while on Academic Warning. Failure to satisfy these requirements will result in academic expulsion, and expelled students must wait 12 months before they can reapply for admission.

Students with a cumulative GPA of 0.5 or lower are not eligible for Academic Warning and become academically ineligible to continue. They will not be allowed to re-register for a period of one academic year. Any student in this circumstance may reapply for admission after a 12-month period.

Failing to Complete Program within the Maximum Time Frame
 Students who fail to complete their degree program within the maximum attempted credits allowed, as defined under the satisfactory progress policy, will be terminated by the institution. Terminated students may reapply for admission after a 12-month period.

Grade Changes and Appeals

Only the faculty member who administered the grade may make grade changes. In cases where the faculty is not available to consider a grade change, the department chair, in consultation with the Dean of Faculty, may make such a change.

Grade appeals must be made within 14 days of final grades being issued. Using the Grade Appeal Form, appeals are made in writing to the course instructor or the department chair if the instructor is unavailable. Students may appeal to the department chair and then the Dean if a satisfactory resolution is not achieved.

Repeating Courses

Students may repeat any course in which they did not receive a passing grade (below a "C-" in a core course, below a "D" in a non-core course), as long as they are in good standing with the Institute and eligible to continue their studies. All grades and attempted classes remain on a student's transcript. However, only the grades earned in the two most recent attempts of a course are calculated in a student's GPA. Courses in which a student has earned a passing grade may be repeated as audit courses only.

Course Overload

During a given semester, sophomores, juniors, and seniors may be enrolled in a maximum of 21 credits. Freshmen should check their majors for specific semester maximums. Students seeking special permission to take more than the maximum credits in a given semester should use the Override Form and get approval from their academic advisor.

Attendance

Students more than 15 minutes late to class will be marked as absent for that entire class. Students may not leave class early without instructor permission. Students absent from all classes without explanation for a period of two consecutive weeks or more are considered to have withdrawn from the Institute as of their last date of attendance.

Withdrawing from Individual Classes

To withdraw from individual classes, a student must complete the appropriate withdrawal form, either in person or online.

Withdrawing from the Institute

To formally withdraw from the Institute, a student must submit a completed Withdrawal Notice Form to the Office of the Registrar. Withdrawal Notice Forms may be obtained from the Administration Office. Upon withdrawing from DigiPen, the student shall immediately return all materials in his or her possession relating to the program, whether created by the student or other students, or provided by the Institute.

Hardship Withdrawal

Students may seek a hardship withdrawal when one of three conditions prevents a student from completing all courses: death of a close family member, catastrophic illness in the family, or injury or illness that incapacitates the student. Hardship withdrawals may be sought any time after the last date to withdraw from classes, as listed in the Academic Calendar, but not after all materials for a course have been completed (i.e., after submitting the final exam or final assignment). The Hardship Withdrawal Form, a personal statement, and appropriate documentation (i.e., death certificate, obituary, letter from a state-licensed physician or mental health professional) must be provided to support all requests to the Administration Office. Once all documents are received, the Administration Office, the Administrator will forward the documents to the Hardship Withdrawal Review Committee.

If the Administration grants a hardship withdrawal, the student will receive " W " grades in all classes and is ineligible to receive a grade or an incomplete in any class in that semester. The student will be withdrawn from DigiPen, effective his or her last day of attendance. Regular refund and all Financial Aid policies apply. Students seeking readmission must abide by DigiPen's readmission policy.

The "W" Grade

If a student withdraws from individual classes or the Institute, please note:

1. If withdrawing before the end of the second week of instruction, no course entries will appear on the student's transcript for that semester.
2. If withdrawing after the end of the second week of instruction and before the end of the eighth week of instruction, the Registrar will assign a final grade of "W" for each course in which the student was enrolled.
3. At the end of the eighth week of instruction of the semester, withdrawn students will receive final grades for each course in which they were enrolled.

Dean's Honor List Requirements

Prepared at the end of each fall and spring semester, the Dean's Honor List officially recognizes and commends students whose semester grades indicate distinguished academic accomplishment. Both the quality and quantity of work done are considered.

You must meet the following qualifications to be a recipient of this honor:

1. You must be matriculated.
2. You must be registered full-time in credit-bearing courses during the Fall or Spring Semester.
3. Full-time students must complete 12 or more credits in one semester.
4. Only passing grades ("A," "B," "C," and "D") in creditbearing courses are counted for eligibility.
5. No failing grades: a grade of " F " in any course makes the student ineligible, regardless of other grades.
6. Minimum GPA of 3.5 is required.
7. Any courses that do not count towards the degree are excluded.
8. AP, Internship, and Independent Study credits are excluded.
9. Pass/Fail credits are NOT to be counted when calculating qualifying credits.
10. Incomplete grades will be evaluated after they are made up. The student must have qualified for the Dean's Honor List before and after the Incomplete grade was made up.

The student's cumulative grade-point average is not considered; only the grade-point average for that particular semester is relevant

Process for Grievances and Appeals

Concerns over Academic Standing

Students who would like to file an appeal against a decision regarding their academic standing in a particular course should discuss the matter with their instructor. If a satisfactory resolution is unattainable, students may file an appeal with the head of the department for that course. If the resultant solution is still unsatisfactory, then students may file an appeal with the Dean of Faculty. Students may appeal grades and review exams no later than two weeks after transcripts are issued. The Administration reserves the right to destroy any examination papers after the two-week appeal period. However, academic records will be kept indefinitely.

Appeal for Refund of Tuition

Students who would like to file an appeal against a decision regarding their tuition refund shall file a written request to the Executive General. If dissatisfied with the decision of the Executive General, students may file a second appeal with the Chief Operating Officer. If they are still dissatisfied, students may appeal to the President of the Institute. If still unsatisfied with the decision, students may appeal to the Executive Director of the Higher Education Coordinating Board of the State of Washington at:

Higher Education Coordinating Board of the State of Washington
P.O. Box 43430

Olympia, WA 98504-3430

Other Disputes

Students who feel that they have any other type of dispute with the Institute should file a complaint with the relevant Department Chair or supervisor. A copy of this complaint shall be given to those involved with the dispute. If the student is not satisfied with the decision of the Department Chair or supervisor, a second complaint may be submitted to the Chief Operating Officer. If the student is still dissatisfied with the decision, he or she may appeal to the President of the Institute. If the student remains unsatisfied with the decision, he or she may appeal to the Executive Director of the Higher Education Coordinating Board of the State of Washington

Transcripts

If a student's financial obligation is not fulfilled, the Institute is authorized to do the following until the owed monies are paid: withhold the release of the student's academic records or any information based upon the records, and withhold the issue of the student's transcripts. Should you have any questions, please contact the Administration office.

To request an official transcript, students should complete a transcript request form (available online or from the front office) and either mail or fax it to the Administration office. Requests are usually processed within three business days. Unofficial grade reports can be viewed or printed anytime using the Student Records System (SRS) online.

Exams

All students are required to be in attendance at the times scheduled by the Institute for final exams. Instructors are not required to make arrangements for individuals to take final exams at a different time than the rest of the class. Should a student miss an exam, it is the student's responsibility to notify the instructor within 24 hours of the missed exam. In the event that a student fails to provide such notification to an instructor, or if the Institute does not find the reasons for missing an exam justifiable, the student will be given a failing grade for the exam(s).

Should a student miss a final exam and notify his or her instructor within 24 hours of the missed exam, the Registrar shall review the individual circumstances. Only documented emergencies will be considered acceptable reasons for missing exams. Exam retakes shall be allowed at the sole discretion of the Registrar and Department Chair. Examples of unacceptable reasons for missing an exam include the demands of a time-consuming job, the desire to leave town for a vacation or family gathering, the desire to do well on tests in other courses, etc.

A retaken exam shall be different than the original one taken by the students, and the timing of it shall be at the sole discretion of the individual instructor. In all cases, retakes shall be administered no later than one week after the original, missed exam.

STUDENT INTERNSHIPS

Overview of Internships

Student internships are monitored, on-site work or service experiences for which students earn credit. All registered juniors and seniors are eligible for internships. Internships can be arranged for any setting related to a student's career goals. The internship usually takes place in a professional workplace under the supervision of an experienced professional, whereby a high degree of responsibility is placed on the student. Internships can be part-time or full-time, paid or unpaid. They can vary in duration and location, but must be approved in advance by the Institute.

Objectives of Internship Programs

Through an internship program, students establish and meet intentional learning goals through actual product development experience, while actively reflecting on what they are learning throughout the experience. The goals for the internship may include:

- Academic learning - applying knowledge learned in the classroom to tasks in the workplace.
- Career development - gaining knowledge necessary to meet minimum qualifications for a position in the student's field of interest.
- Skill development - an understanding of the skills and knowledge required in a specific job category.
- Personal development - gaining decision-making
skills, critical thinking skills, and increased confidence and self-esteem.

Since internships have a strong academic component, students are carefully monitored and evaluated for academic credit. As a rule, one semester credit hour of academic credit is awarded for 45 hours of internship/work experience. Typically, a five credit internship taken during the fall, spring, or summer semester means that the student will spend no less than 225 hours in the experience. Students may register for up to two semesters of internship credit (e.g., BSCS students may not register for more than 10 internship credits).

The element that distinguishes an internship from a short-term job or community service is the intentional "learning agenda" that the intern brings to the experience. In support of a positive experience for the student and the employer, the Internship Coordinator assists in assuring that the work experience meets both student and organizational needs, with priority given to the student's interests and to the assurance that the experience will result in learning outcomes acceptable to his or her degree program.

CHANGE OF MAJOR AND GRADUATION

Requesting a Change of Major

Current students may request a change of major by submitting a "Change of Major" form to the Office of Admissions, along with any additional materials needed for the major to which they would like to transfer. The Change of Major form is available online.

A decision will be sent via email or mail to students requesting a change of major. Students who are approved to change majors will need to sign a new student enrollment agreement for the new major before making the change official.

Students who change their majors are encouraged to meet with their academic advisors or with the head of the program to which they are transferring to determine what changes need to be made to their schedules or recommended course sequences.

Important Information Regarding Change of Major Requests

- Change of majors will only take effect on the first day of a new semester. To be considered, requests must be submitted at least fifteen working days before the start of a new semester; otherwise, the request will be considered for the next available semester.
- Students considering a change of major should remember to consider add/drop deadlines. Requests for change of majors do not exempt students from the add/drop policies at DigiPen.
- Students may register for classes in any major prior to the deadline for adding a class, but we recommend that they speak to their academic advisors if they have not yet had their requests for a change of major approved.
- Students should speak to the degree program faculty if they have specific questions about transferring from one degree program to another.
- Any questions about the status of a change of major request or about this process should be directed to the Office of Admissions or to the Registrar's Office

Graduation Requirements

Degrees and certificates will be granted at the end of the semester in which students complete the final requirements. For example, if a student receives an "l" grade in a course required for graduation in his or her final semester, he or she will not graduate until the semester in which the "I" is replaced by a letter grade. During that semester, the student must reapply for graduation.

A program of study must be completed within a reasonable period of time for a student to be eligible for graduation. The Institute defines "reasonable time" as the credit hours attempted cannot exceed 1.5 times the credit hours required to complete the program. Full-time students who do not complete their studies during this maximum time frame will be placed on academic probation and will have to complete their program requirements under the conditions of their academic probation. For more information, please see the section on "Academic Probation".

Applying for Graduation

The Institute sets minimum requirements for all students seeking undergraduate degrees. DigiPen reserves the right to change graduation requirements at any time. Every degree candidate is expected to comply with changes in requirements as they relate to the uncompleted portion of coursework.

Most students will follow the graduation requirements published in the catalog for the year they enter DigiPen. Students who interrupt their attendance may be held to the requirements of the current catalog when they return. Students are responsible for ensuring that all graduation requirements have been completed.

Approximately four to six weeks after students apply for graduation, a degree audit report will be issued. This report identifies courses students have taken to complete their degree requirements. This report is used to assist students in planning future coursework to ensure that all graduation requirements are met. Students should take the degree audit report with them when checking progress toward graduation with their academic advisor and/or the Office of the Registrar. Students are responsible for notifying the Office of the Registrar of any changes in their proposed programs and for resolving any questions prior to registering for their final term at DigiPen.

All Incomplete grades and conditions affecting graduation must be removed from the student's record by the last regular class period of the term. All credit course work affecting graduation must be completed by the regular class period of the term. A letter of instruction is mailed to degree candidates in March regarding deadlines and procedures for commencementrelated activities.

Undergraduate students who feel there is justification for an
exception to these graduation requirements may petition the Appeals/Discipline Committee. Information on filing a petition is available at the Registrar's Office.

Graduation Application Process

Graduation Date	Graduation Application Due Date
April	December 1
July	April 1
December	April 1
Table 1.1	

Table 1.1

1. The student completes the Graduation Application and submits the $75 €$ graduation fee by the deadlines stated in table 1.1.
2. The academic advisor or administrator will review the most recent transcript or degree plan to verify progress and will notify the student whether or not he or she has completed all courses satisfactorily to date, and, if upon satisfactory completion of courses for which the student is currently registered, he or she will be eligible for graduation.
3. Final approval will not be made until after final grades are submitted and posted to the student's record. Degrees will be mailed as soon as possible after that process, which should be from four to six weeks after completion. The student needs to keep the Office of the Registrar informed of address changes so that degrees are mailed to the correct address.

STUDENT AFFAIRS

Placement Assistance

Advice on career options is available to enrolled students. We work to establish relationships with prospective employers on an on-going basis. The Institute also provides placement services in the form of internships that may be available during the summer; the placement program bases its recommendations of students on their academic performance. DigiPen also attends industry events, to promote the Institute's programs and its students. Placement assistance continues beyond graduation as these services are extended to alumni. Please note that employment upon graduation is not guaranteed.

Special Needs

DigiPen Institute of Technology Europe-Bilbao strives to ensure that all students are provided with an equal opportunity to participate in the Institute's programs, courses, and activities. Students desiring special assistance should identify themselves to the Administration and provide current documentation supporting their disability. Students must assist in identifying the proper accommodations they need, and they must negotiate these accommodations at the beginning of each semester. DigiPen will provide reasonable
accommodations and academic adjustments as long as provisions do not fundamentally alter the nature of the program or the academic requirements that are considered essential to the program of study.

Graduate Follow Up

The Institute maintains a database of all graduates, and DigiPen alumni are encouraged to report back regarding changes to their professional status. DigiPen hosts an annual reunion at the Game Developer's Conference and extends placement services to all alumni. DigiPen Europe-Bilbao graduates will be welcome to attend these U.S. alumni events.

EDUCATION RIGHTS AND PRIVACY OF STUDENT RECORDS

Abstract

DigiPen Institute of Technology Europe-Bilbao reserves for students certain rights with respect to their education records. These rights are:

1. The right to inspect and review the student's education records within 45 days of the day the Institute receives a request for access. Students should submit to the Registrar, Dean, or head of the academic department (or appropriate official) written requests that identify the record(s) they wish to inspect. The Institute official will make arrangements for access and notify the student of the time and place where the records may be inspected. If the records are not maintained by the Institute official to whom the request was submitted, that official shall advise the student of the correct official to whom the request should be addressed.
2. The right to request the amendment of the student's education records that the student believes is inaccurate. Students may ask the Institute to amend a record that they believe is inaccurate. They should write to the Institute official responsible for the record, clearly identify the part of the record they want changed, and specify why it is inaccurate. If the Institute decides not to amend the record as requested by the student, the Institute will notify the student of the decision and advise the student of his or her right to a hearing regarding the request for amendment. Additional information regarding the hearing procedures will be provided to the student when notified of the right to a hearing.
3. The right to consent to disclosures of personally identifiable information contained in the student's education records. One exception, which permits disclosure without consent, is disclosure to school officials with legitimate educational interests. A school official is defined as a person employed by the Institute in an administrative supervisory, academic, or support staff position (including law enforcement unit personnel and health staff); a person or company
with whom the Institute has contracted (such as an attorney, auditor, or collection agent); a person serving on the Board of Trustees; or a student serving on an official committee, such as a disciplinary or grievance committee, or assisting another school official in performing his or her tasks. A school official has a legitimate educational interest if the official needs to review an education record in order to fulfill his or her professional responsibility. Upon request, the Institute discloses education records without consent to officials of another school to which a student intends to enroll.

Release of Student Academic and Financial Records

If a student's parent, guardian, family member, or other individual wishes to obtain any of the student's information (including by not limited to account balance, tuition payments due, class registration, etc.), the student must fill out and submit the Student Consent for Release of Records Form listing the names of the individuals to whom his or her information may be released. This form will be distributed to all students during Orientation and can also be obtained from the Administration.

Release of Student Directory Information

The following information is considered public or directory information and may be released to anyone unless a student informs the Office of the Registrar that he or she does not wish any information released:

1. Name
2. Local telephone number
3. Institute email address
4. Major field of studies
5. Dates of attendance
6. Degrees and awards received
7. Full-time or part-time enrollment status
8. Number of credits for which a student is registered each semester.
9. Educational institutions attended

"NO" to Release of Information

If a student does not wish to have the Institute release any directory information and/or does not want directory information to appear in any published or electronic Student Directory, he or she may restrict access through the Administration Office. No information will be released on students or to students who have restricted release of directory information, including degrees awarded and dates of attendance.

Change from "NO" to "YES"

If a student restricted the release of directory information and now wishes to allow this information to be released, he or she must go to the Administration Office and present photo identification and a completed Release/Restrict of Directory Authorization Form.

REGULATION OF CONDUCT AND DISCIPLINARY PROCEDURES

The Institute has the right to take appropriate disciplinary action warranted by a student's misconduct. The specific provisions as to offenses, penalties, and disciplinary procedures set out below should not be construed as limiting the general authority of the Institute.

Rules and Regulations

1. It is strictly forbidden to bring in or out of the premises any digital storage and any form of memory sticks or optical media, diskettes, video recorders, etc. other than for academic and approved usages which directly apply to courses being taken by the student during the term of this agreement, or for the required purpose of maintaining back-up copies of studentcreated projects and assignments. Additionally, it is forbidden to bring in any personal computers or software, as well as any video or audio recording equipment, without first agreeing to and signing a Network and Internet Usage Agreement. Students are responsible for guaranteeing that any files transferred to and from DigiPen's equipment are free of malicious viruses or Trojan horses. In respect to the above, students are only allowed to carry in and out of the DigiPen premises data files only and not executable files. This includes student-created executables. Following this policy will greatly reduce the risks of virus infections to the DigiPen network. In order for DigiPen faculty to review and grade projects and assignments, source code must be stored and executables must be generated at DigiPen from the corresponding source code.
2. Students are forbidden from downloading any files from the Internet or installing any software, including but not limited to freeware and/or shareware, without the written approval from a DigiPen faculty member or from DigiPen's IT department. Furthermore, illegal use of the Internet may be prosecuted to the fullest extent of the law.
3. In order to prevent damage to equipment and facilities, food and/or drink are not permitted anywhere within the training areas of the premises
4. Smoking is not permitted anywhere within the premises, washrooms, elevators, or stairwells.
5. Student ID tags must be worn visibly when on the premises. Lost or stolen ID tags must be reported to Security as soon as possible.
6. All student projects must receive approval from DigiPen's instructors prior to commencement of any production. DigiPen reserves the right to reject ideas or to stop production of any student game, animation, or project for reasons deemed appropriate to DigiPen. The Institute will not allow the production of any student work that contains or makes a direct or indirect reference to any of the following material/ subject.

- Religious content
- Religious symbols
- Pornographic material
- Excessive violence
- Sexual and nude content
- Promotion of illegal substances
- Promotion of racism or hate
- Content demeaning to any group of society

7. Students shall not submit any work to the Institute that infringes upon the intellectual property rights of a third party. If, during the program, a student submits such work to the Institute, he or she shall indemnify or hold harmless the Institute from and against all loss, damage, cost (including legal fees), and other liability, which the Institute may suffer as a result of the same.
8. Cheating on an examination will not be tolerated. Using any materials other than those authorized by the examiners during an exam is an example of cheating.
9. Submitting false documents, transcripts, or any other academic credentials to gain admission to DigiPen or to obtain any academic benefit is grounds for expulsion without recourse.
10. Disrupting instructional activities, including making it difficult to proceed with scheduled lectures, seminars, examinations, tests, etc., shall be considered an offense.
11. In the interest of maintaining an environment that is safe and free of violence and/or threats of violence for its employees, students, and visitors, possession of a dangerous weapon is prohibited on property owned by or under the control of DigiPen. Weapons and ammunition are potential safety hazards. Possession, use, or display of weapons or ammunition is inappropriate in an academic community for any reason, except by law enforcement officials. No weapons or ammunition shall be worn, displayed, used, or possessed on campus. Any member of the DigiPen community who violates this policy shall be subject to appropriate disciplinary action up to and including dismissal from DigiPen. Any person who is not a member of the DigiPen community who violates this policy shall be subject to all appropriate
procedures and penalties including, but not limited to, the application of the criminal trespass provisions of local law. Members of the DigiPen community who are aware of any violations of this policy or who have other concerns about safety or weapons should report them to the Student Affairs Director, Dean of Faculty, Senior Vice President of Administration, or the Chief Operating Officer.
12. Evidencing symptoms of alcohol or drug use while on Institute property, or the procurement or possession of alcohol or illegal substances on Institute property, is considered an offense.
13. It is forbidden to damage, remove, or make unauthorized use of the Institute's property or the personal property of faculty, staff, students, or others at the Institute. Without restricting the generality of "property," this includes information, however it may be recorded or stored.
14. It is strictly forbidden to use any equipment in the premises to produce any commercial work. The equipment is only to be used for homework and training purposes. Any attempt to produce commercial work will result in legal action against the offenders.
15. Public areas and equipment of the building must be kept clean. No tampering, moving, defacing, or otherwise altering the premises, equipment, or the building property is allowed.
16. Graffiti, other forms of mural art, or the posting of signs anywhere in the premises and the building without permission of the Administration is not permitted.
17. Office equipment (photocopier, fax, office phone, etc.) is not available for student use.
18. The assault of individuals, whether verbal or physical, including conduct which leads to the physical or emotional injury of faculty, staff, students, or others at the Institute, or which threatens the physical or emotional well-being of faculty, staff, students, or others at the Institute, is considered an offense.
19. In accordance with applicable law, DigiPen prohibits sexual harassment and harassment between faculty/ staff and students and between students and students because of race, sex, color, national origin, ancestry, religion, physical or mental disability, veteran status, age, or any other basis protected by local law. Any such harassment may violate the law and will not be tolerated. DigiPen's policy prohibits inappropriate conduct even though it may not reach the legal standard for harassment.
20. It is forbidden to attempt to engage in, aid and abet others to engage in, or attempt to engage in conduct which would be considered an offense.
21. Failing to comply with any penalty imposed for misconduct is considered an offense.

Penalties

The penalties that may be imposed, singly or in combination, for any of the above offenses may include, but are not limited to, the following:

1. A failing grade or mark of zero for any course, examination, or assignment in which the academic misconduct occurred.
2. Suspension from the Institute for a specified period of time or indefinitely. Students will not receive credit for courses taken at another institution during a suspension.
3. Reprimand, with the letter placed in the student's file.
4. Restitution, in the case of damage to property or unauthorized removal of property.
5. A notation on the student's permanent record of the penalty imposed.
6. Legal action against the student committing the offense.

Warnings

1. The penalty for plagiarism or for cheating is normally suspension from the Institute.
2. Charges filed under the local or international law and/or the commencement of legal proceedings do not preclude disciplinary measures taken by the Institute.

Procedures

Any student suspected or apprehended in the commitment of an offense shall be given the opportunity to explain the incident and, if he or she requests, to meet with department heads, a Student Affairs Officer, or other appropriate person, before the alleged offense is reported to the Discipline Committee.

An alleged instance of student misconduct deemed serious enough for action by the Institute shall be referred to the Discipline Committee. After an investigation and hearing at which the student is invited to appear, the committee reports its decision to the Dean of Faculty. If he or she wishes, the student then has the opportunity to meet with the Dean of Faculty to appeal the decision.

Dismissal by the Institute

By written notice to a student, the Institute may, at its sole discretion, dismiss a student at any time if he or she is in default of any of the terms, covenants, or conditions of the Institute. Furthermore, the Institute reserves the right to withdraw a student if he or she is unable to maintain the minimum required GPA in his or her courses at the end of each semester. Upon dismissal, the student shall immediately return to the Institute all materials in his or her possession relating to the program, whether created by the student or other students, or provided by the Institute. In the event of dismissal, tuition and fees, if any, shall be refunded in accordance with the refund schedule, as it may be amended from time to time.

Appeals

A student has the right to dispute a disciplinary decision of the Department Chair. A student who wishes to make an appeal must notify the Executive Director in writing and must provide a full explanation of the reasons for appealing.

Appeal hearings take place before a committee called together by the Executive Director. A student is entitled to be represented or assisted throughout the appeal process by an advocate who may be a friend, relative, or legal counsel. The student is entitled to explain the reasons for appealing either orally or in writing, and he or she may call witnesses. The Department Chair is also present and puts forth the reasons for the original decision.

The members of the committee may ask questions of both the student and the Department Chair. As soon as possible after the hearing is completed, the Executive Director will notify the student of the final decision in writing.

Degree Programs for the Academic Year 2012-2013

BACHELOR OF SCIENCE IN COMPUTER SCIENCE IN REALTIME INTERACTIVE SIMULATION

Program Overview

The electronic and digital entertainment industry is one of the fastest growing and most exciting career choices of the future. The video game, movie, and military industries are only a few of those that demand well-trained, enthusiastic programmers, designers, artists, and managers. DigiPen Institute of Technology is a key provider of these individuals, and the Bachelor of Science in Computer Science in RealTime Interactive Simulation (BSCS) prepares programmers for these industries. Designed and developed by industry experts and DigiPen faculty, the Institute's four-year BSCS program is a computer science degree that is highly focused on the technical area of graphics and simulations. Participants in the BSCS program specialize in the skills and tools necessary to create real-time simulations of real-life events and imaginary situations.

The BSCS program offers extensive training in mathematics and physics as a foundation for the various topics presented in general computer science and computer graphics. Throughout the degree program, BSCS students participate in several team-based projects. These substantial projects are designed to give students concrete experiences in which they apply the theoretical knowledge gained from their courses. Forming the cornerstone of the program, these projects exemplify many of the skills necessary in the video game industry today: teamwork, design, implementation, follow through, and business knowledge, among others. BSCS students gain the experience of designing, programming, and testing a variety of simulations and games, including text-based, scrolling, simulation, and 2D and 3D games.

Students in this degree program work both individually and collaboratively to learn the fundamentals of game design, production, and programming. Additionally, they write game design documents and technical design documents, learn how to schedule tools and techniques, and participate in the full production of several games. These game-oriented productions are a perfect media to present complicated subjects in a format agreeable to students. These productions:

- Are graphics-oriented simulations, including 2D and 3D simulations.
- Can realistically reproduce or simulate natural phenomena and real-life events. Flight simulators are excellent examples of such simulations.
- Are highly interactive, requiring an elaborate and efficient graphical user interface (GUI). The development of a GUI requires the management of windows, menus, dialog boxes, and hardware resources including keyboards, mice, and display monitors.
- React in real time. The implementation of such simulations requires a thorough knowledge of computer hardware and computer languages.
- Are story-based simulations requiring a plot in which game objects must interact intelligently with each other. Therefore, in order to make games challenging and interesting, students must design and implement good artificial intelligence algorithms, which serve as the cognitive processes for the computer-controlled game objects.
- Could be designed for either a single-player or multi-player environment. The development of the latter requires the understanding of subjects such as computer networks, TCP/IP, and Internet programming.
- Are excellent examples of large and complex productions. Teamwork is essential to the successful completion of such productions. Therefore, students are divided into teams and are rigorously trained in object-oriented programming languages, paradigms, and software engineering techniques and practices.

Graduates of this program will gain the skills required to successfully pursue entry-level careers in the rapidly growing world of computer technologies in general, and computer graphics and simulations in particular. This degree prepares students to work in the computer and video game industry as intermediate-level programmers in graphics, artificial intelligence, networking, or general programming; beginning designers; or engineering tool staff members. Some of the job titles that graduates of this program may aspire to are Solutions Architect, Compatibility/Playability Tester, Game Analyst, Quality Assurance Engineer, Quality Assurance Supervisor, Computer or Software Programmer, Software Engineer, Game Programmer, Engine and Tools Programmer, Game Graphics Programmer, Artificial Intelligence Programmer, Audio Programmer, Web Programmer, or Software/Lead Tester.

Rather than attempt to provide a broad, general education, this degree program is an intensive educational experience in a specialized and highly technical area, and it prepares students for a career in several rapidly expanding industries. Staff and faculty are prepared to guide students desiring more general education course work about supplementary opportunities available through other institutions.

Degree Requirements

Number of Credits and GPA

The BSCS requires completion of at least 154 credits with a cumulative GPA of 2.0 or better. The program usually spans eight semesters of fifteen weeks each, or a total of four academic years.

Humanities and Social Sciences Requirement

Required courses are ENG 110 and COM 150. Five additional ENG credits are required from ENG 116 and above. Students must take an additional three credits in HIS, PSY, or SOS. (Total: 14 credits)

Art Requirement

Students are required to take ART 210, CG 130 and two additional credits from the following: ANI 125, ART 400, FLM 115, FLM 151, FLM 152, FLM 275, or ART 410. (Total: 7 credits)

Computer Science Requirement

The following courses are required: CS 102, CS 120, CS 120L, CS 170, CS 170L, CS 180, CS 200, CS 225, CS 230, CS 250, CS 260, CS 280, CS 300, CS 315, CS 330, CS 350, and CS 365. Students must select four more courses (12 credits) numbered higher than 200 or PHY 350. (Total: 60 credits)

Mathematics Requirement

The following courses are required: MAT 140, MAT 150 or MAT 180, MAT 200 or MAT 230, MAT 250, MAT 258, MAT 300, and one MAT elective numbered higher than 300, or MAT 256. (Total: 24 credits)

Physics Requirement

The following courses are required: PHY 200 and PHY 250. (Total: 6 credits)

Game Projects Requirement

The following courses are required: GAM 100, GAM 150, GAM 200, GAM 250, GAM 300, GAM 350, GAM 400, and GAM 450. (Total: 34 credits)

Electives

Students must complete seven to nine credits of elective courses, which students can choose from any department at DigiPen. (Total: 7-9 credits)

Grade Requirement and Core Courses

Students must receive a grade of "C-" or higher in all core courses for the BSCS major. (In a non-core course, a grade of "D" or higher is considered passing.) The core courses are all those taken to fulfill the GAM, MAT, and CS requirements as described above. PHY 200 is also a core course.

Note on General Education Courses

The following courses satisfy the general education requirement for the Bachelor of Science in Computer Science in Real-Time Interactive Simulation: ART 210 (2), ART elective (2), COM 150 (3), ENG 110 (3), ENG electives numbered ENG 116 or higher (5), a social science elective in HIS, PSY, or SOS (3), MAT 150 or MAT 180 (4), MAT 250 (3), PHY 200 (3), and PHY 250 (3), for a total of 31 credits.

Recommended Course Sequence

Listed on the following page is the recommended course sequence for the Bachelor of Science in Computer Science in Real-Time Interactive Simulation. Please note the following: Students must achieve a grade of " C -" or higher in the core courses to earn credit toward this degree.

Recommended Course Sequence Chart (BSCS)

Semester	Course	Course Title	Core	Credits
	MAT 140	Linear Algebra \& Geometry	X	4
	CS 102	Computer Environment	X	4
	CS 120	High-Level Programming I- The C Programming Language	X	3
	CS 120L	High-Level Programming I Lab	X	1
	GAM 100	Project Introduction	X	3
	ENG 110	Composition		3
	ART 210	Art Appreciation		2
	Semester Total			20
	MAT 150 or MAT 180	Calculus and Analytic Geometry I or Vector Calculus I	X	4
	CS 170	High-Level Programming II - The C++ Programming Language	X	3
	CS 170L	High-Level Programming II Lab	X	1
	CS 230	Game Implementation Techniques	X	3
	GAM 150	Project I	X	3
	COM 150	Interpersonal and Work Communication		3
	HSS Elective	One humanities \& social science elective from any three-credit HIS, PSY, or SOS course		3
	Semester Total			20
	MAT 200 or MAT 230	Calculus and Analytic Geometry II or Vector Calculus II	X	4
	CS 180	Operating System I, Man-Machine Interface	X	3
	CS 200	Computer Graphics I	X	3
	CS 225	Advanced C/C++	X	3
	GAM 200	Project II	X	4
	PHY 200	Motion Dynamics	X	3
	Semester Total			20
$\pm$$\vdots$む̀©©©	PHY 250	Waves, Optics, and Aerodynamics		3
	CS 250	Computer Graphics II	X	3
	CS 260	Computer Networks I, Interprocess Communication	X	3
	CS 280	Data Structures	X	3
	GAM 250	Project II	X	4
	MAT 250	Linear Algebra	X	3
	Semester Total			19

Semester	Course	Course Title	Core	Credits
	CS 300	Advanced Computer Graphics I	X	3
	CS 315	Low-Level Programming	X	3
	CS 330	Algorithm Analysis	X	3
	MAT 258	Discrete Mathematics	X	3
	CG 130	3D Computer Animation Production I		3
	GAM 300	Project III	X	5
	Semester Total			20
	MAT 300	Curves and Surfaces	X	3
	CS 350	Advanced Computer Graphics II	X	3
	CS 365	Software Engineering	X	3
	Computer Science or Physics Elective	Any 200-level or higher CS course not required or PHY 350	X	3
	GAM 350	Project III	X	5
	Elective	An elective of the student's choice from any department at DigiPen		3
	Semester Total			20
	Art Elective	Select one: ANI 125, ART 400, FLM 115, FLM 151, FLM 152, FLM 275, or ART 410		2-3
	English Elective	One English elective chosen from any ENG course, ENG 116 and above		2-4
	Computer Science or Physics Elective	Any 200-level or higher CS course not required or PHY 350	X	3
	Math Elective	MAT 256 or any MAT course greater than 300	X	3
	GAM 400	Project IV	X	5
	Elective	An elective of the student's choice from any department at DigiPen		3
	Semester Total			18-21
	English Elective	One English elective chosen from any ENG course, ENG 116 and above		2-4
	Computer Science or Physics Elective	Any 200-level or higher CS course not required or PHY 350	X	3
	Computer Science or Physics Elective	Any 200-level or higher CS course not required or PHY 350	X	3
	GAM 450	Project IV	X	5
	Elective	An elective of the student's choice from any department at DigiPen		3
	Semester Total			16-18
Degree Total				154 minimum

Note: Please see the previous page for an explanation of core courses.

BACHELOR OF FINE ARTS IN DIGITAL ART AND ANIMATION

Program Overview

As the animation and video game industries mature, there is a noticeable shift by companies to hire employees who demonstrate more than a working knowledge of a specific commercial software package or traditional artistic skills. Industry-quality standards continue to rise, and competition for entry-level positions demands that artists possess sophisticated skill sets before they can even begin their careers. Studios seek artists with a broad and integrated foundation of theoretical, practical, and technical skills in production animation, traditional art, modern computer software, and media story flow. Insight and long-term potential have become increasingly important. The studios also demand professional accountability and consistency.

Digital art and animation remain viable career opportunities for graduates possessing these abilities. Animation is capable of solving informational, educational, and entertainment problems no other discipline can resolve. It provides a cornerstone for many industries including cinema, broadcast entertainment, cable television, software development, the Internet, education, simulation, product design, research, forensic science, architecture, telecommunications, advertising, travel and tourism, and video games. The fact that these industries depend upon qualified candidates accentuates the need for quality digital art and animation education.

The broad scope of these demands presents a series of significant academic challenges. Most art students enter collegiate training with little or no substantial background knowledge relative to this field. Many secondary schools have been forced to cut back on the level of arts training that they are able to provide. Consequently aspiring artists must acquire this foundation while they are also trying to establish their professional focus. The complexity of the individual components of this field demand highly structured curricula and programmed sequencing simply to enable most students to be successful. Some students are capable of the rapid assimilation of the integrated knowledge the studios now require, but most are better served by a deeper and more sequential approach to the material.

DigiPen's Bachelor of Fine Arts in Digital Art and Animation seeks to address these needs. Examples of student projects can be found in the DigiPen's Digital Gallery. Students who successfully complete this curriculum will possess the following skills and appropriate samples of professional work:

- A broad foundation of production experiences in both 2D and 3D art and animation. This base allows students to gain an overview of the profession and provides long-term adaptability.
- An area of production emphasis and focus. This enables students to target a specific sector of the industry upon graduation. Each student will produce a portfolio to support this focus.
- Strong foundational skills in storytelling. This includes visual storytelling, literary traditions, story through dialog, story through acting, and cinematic conventions.
- Strong foundational skills in applied technology using industry-standard hardware and software. Students will be thoroughly familiar with modern interface and workflow conventions. They will also understand how to learn new software while maintaining a production schedule.
- A solid foundation in professional work habits and attitude. Students will understand how to utilize and integrate professional criticism into their work. Additionally, they will be able to identify and create work that meets professional quality standards. They will also understand production flow and be able to generate and maintain appropriate schedules and production goals for their work.
- Social perspective and civic accountability relative to the roles that animation plays in society. Students will explore the long-term ramifications of this industry and be able to intelligently discuss their responsibilities to the betterment of the animation industry and society as a whole.

This degree prepares a graduating student for a career in digital art and digital 3D animation, digital 2D animation, and video game or animation pre-production. Some of the careers for which graduates of the BFA in Digital Art and Animation are trained include Props and Environment Modelers, Texture Artists, Level Designers, Character Modelers, Character Riggers, Character Animators, 3D Lighting and Camera Design, Effects Animator, Conceptual Illustration and Character Design, and Storyboard Artists.

Digital Art and Animation Degree Requirements

Number of Credits and GPA

The Bachelor of Fine Arts in Digital Art and Animation requires completion of at least 144 credits with a cumulative GPA of 2.0 or better. Courses are either mandatory or elective and must in either case be passed with a final grade of C - or better (2.0 GPA). The program usually spans eight semesters of fifteen weeks each, or four academic years.

Humanities and Social Science Requirements

The following courses are required: LAW 115, SOS 115, ENG 116, and ENG 315. (Total: 14 credits)

Art Requirement

The following art courses are required: ART 101, ART 115, ART 125, ART 151, ART 201, ART 251, ART 300, ART 350, ART 401, and ART 450. (Total: 31 credits)

Animation Requirement

The following animation courses are required: ANI 101, ANI 125, and ANI 151. (Total: 9 credits)

Computer Graphics Requirement

The following computer graphics courses are required: CG 201, CG 225, CG 275, and CG 300. (Total: 12 credits)

Film Requirement

The following film courses are required: FLM 115, FLM 151, and either FLM 201 or FLM 210. (Total: 9 credits)

Science Requirement

The following courses are required: CS 115, PHY 115, BIO 100, BIO 150, BIO 200. (Total: 15 credits)

Projects Requirement

The following projects courses are required: PRJ 201, PRJ 251, PRJ 300, PRJ 350, PRJ 400, and PRJ 450. Please note that INT 390 and INT 450, internship courses, may be taken in place of PRJ 400 and PRJ 450. (Total: 30 credits)

Electives

Students must take 24 credits from the following: ART 225, ART 228, ART 230, ART 260, ART 301, ART 399, ART 405, CG 251, CG 303, CG 305, CG 315, CG 350, CG 360, CG 399, CG 410, ANI 300, ANI 350, ANI 399, ANI 400, ANI 450, BIO 225, BIO 399, FLM 210, FLM 215, FLM 250, FLM 275, FLM 350, FLM 360, FLM 399, ENG 242, ENG 243, ENG 245. (Total: 24 credits)

Note on General Education Courses

The following courses satisfy the general education requirement for the BFA in Digital Art and Animation: ART 115 (4), BIO 100 (3), BIO 150 (3), BIO 200 (3), ENG 116 (4), ENG 315 (4), FLM 115 (3), LAW 115 (3), SOS 115 (3), CS 115 (3), and PHY 115 (3), for a total of 36 credits.

BFA Grade Requirement and Core Courses

Certain non-elective courses which are part of the DigiPen BFA course sequence are survey or introductory courses intended to widen the student's understanding and educational experience but are additional to, not central to the degree. These courses (SOS 115, PHY 115, CS 115, and LAW 115) are all 100 level courses which are not taught during the first year of the degree program. As such they are considered to be noncore classes and the grading protocols for non-core courses apply (i.e., credit is given if the class is passed with a grade of "D" or better). All other courses, required or elective, are core courses and students must receive a grade of "C-" or higher to pass.

Recommended Course Sequence

Listed on the following page is the recommended course sequence for the Bachelor of Fine Arts in Digital Art and Animation. Please note the following: students must receive a "C-" or higher in the core courses to earn credit toward this degree.

Recommended Course Sequence Chart （BFA）

Semester	Course	Course Title	Core	Credits
	ANI 101	Introduction to Animation－Theories and Techniques I	X	3
	ART 101	The Language of Drawing	X	3
	ART 115	Art and Technology	X	4
	BIO 100	Visual Perception	X	3
	ENG 116	Storytelling	X	4
	FLM 115	History of Film and Animation	X	3
	Semester Total			20
Nむむ©©心	ANI 125	Acting for Animation	X	3
	ANI 151	Advanced Animation－Theories and Techniques II	X	3
	ART 125	Tone，Color，and Composition	X	3
	ART 151	Basic Life Drawing	X	3
	BIO 150	Human Muscular，Skeletal，and Kinetic Anatomy	X	3
	FLM 151	Visual Language and Film Analysis	X	3
	Semester Total			18
※むむ©©	ART 201	Advanced Life Drawing	X	3
	BIO 200	Animal Muscular，Skeletal，and Kinetic Anatomy	X	3
	CG 201	2D Raster Graphics and Animation	X	3
	CG 225	Introduction to 3D Animation	X	3
	PRJ 201	2D Animation Production	X	5
	Semester Total			17
	ART 225 or Elective	3D Design and Sculpture or any course from the Elective Requirement list．	X	3
	ART 251	Character Design	X	3
	CG 251 or Elective	2D Vector Graphics or any course from the Elective Requirement list．	X	3
	CG 275	3D Character Animation	X	3
	PRJ 251	2D Vector Animation	X	5
	Semester Total			17

Semester	Course	Course Title	Core	Credits
	ANI 300 or Elective	Acting Through an Interface or any course from the Elective Requirement list.	X	3
	ART 300	Perspective, Backgrounds, and Layouts	X	3
	CG 300	3D Environment and Level Design	X	3
	ENG 315	Story through Dialogue	X	4
	ART 350	Storyboards	X	3
	PRJ 300	Limited-Scope 3D Production	X	5
	Semester Total			21
	ANI 350 or Elective	Voice Acting for Animation or any course from the Elective Requirement list.	X	3
	PHY 115	Introduction to Applied Math and Physics		3
	$\begin{aligned} & \text { CG } \\ & 350 \text { or } \\ & \text { Elective } \end{aligned}$	Graphics for Gaming or any course from the Elective Requirement list.	X	3
	FLM 201 or FLM 210	Cinematography or Cinematography for Visual Effects	X	3
	PRJ 350	3D Animation Production	X	5
	Semester Total			17
	ART 401	Conceptual Illustration and Visual Development	X	3
	FLM 250 or Elective	Digital Post-Production or any course from the Elective Requirement list.	X	3
	$\begin{aligned} & \text { FLM } \\ & 275 \text { or } \\ & \text { Elective } \end{aligned}$	Fundamentals of Music and Sound Design or any course from the Elective Requirement list.	X	3
	ART 450	Portfolio	X	3
	PRJ 400	Capstone Project I	X	5
	Semester Total			17
	$\begin{aligned} & \text { ANI } \\ & 400 \text { or } \\ & \text { Elective } \end{aligned}$	Cinematic Animation or any course from the Elective Requirement list.	X	3
	SOS 115	Media and Ethics: A Social Science Perspective		3
	CS 115	Introduction to Scripting and Programming		3
	LAW 115	Introduction to Intellectual Property and Contracts		3
	PRJ 450	Capstone Project II	X	5
	Semester Total			17
Degree Total				144 minimum

Note: Please see the previous page for an explanation of core courses.

Course Descriptions for the Academic Year 2012-2013

DEPARTMENT OF ANIMATION AND PRODUCTION

Animation Courses

ANI 101 Introduction to Animation - Theories and Techniques I (3 Cr.)

Prerequisite(s): None
This course introduces students to the principles of animation through classical animation techniques. Students explore the art of creating convincing movement through effective timing, spacing, and drawing. Works of master animators are screened and analyzed frame-by-frame to illustrate the principles covered in class, and students will put their knowledge to work through a series of exercises. The ultimate goal of both this course and its sequel is to introduce methods by which animators "act" and bring characters to life through sequential images.

ANI 125 Acting for Animation (3 Cr.)
 Prerequisite(s): None

An animator's ability to express attitude, thought, and emotion through a character's body language is a fundamental skill necessary for success. Therefore, this course focuses on presenting tools and techniques for translating thoughts and feelings into specific gestures and actions. The course introduces students to the history of acting in theater, animation, and film. Students explore the basic fundamentals and differences of acting for the stage, film, and animation through a series of acting exercises and problems. Special emphasis is given to classical method acting.

ANI 151 Advanced Animation - Theories and Techniques II (3 Cr.)
 Prerequisite(s): ANI 101

In ANI 151 students continue to explore and exercise the concepts and techniques of classical animation through a series of assignments. The exercises in this course are considerably more demanding than those completed in ANI 101 as they are longer and will require more refinement, subtlety, and creativity. There is also a greater emphasis on character development - the expression of personality, mood, thought, and attitude through motion and posing.

```
ANI 300 Acting Through an Interface (3 Cr.)
Prerequisite(s): ANI 125, ANI 151 \& CG 275
```

An animator's ability to express attitude, thought, and emotion through a surrogate is a fundamental skill of 3D character animation. This course builds upon the earlier acting and 2D animation curriculum. It explores 3D character animation techniques of performance, physicality and weight. Students complete a number of animation assignments during the semester.

ANI 350 Animation for Dialogue (3 Cr.)
 Prerequisite(s): ANI 300

This course explores the nature of acting through the medium of the human voice. The curriculum explores narration, expressive reading, diction, and vocal refinement. It introduces students to basic audio technology and recording equipment. The course also covers lip-synchronization techniques in animation and culminates in a series of practical exercises in both 2 D and 3 D animation.

ANI 399 Special Topics in Art (3 Cr.)
 Prerequisite(s): PRJ 251

The content of this course may change each time it's offered. It is for the purpose of offering a new or specialized course of interest to the faculty or students that is not covered by the courses in the current catalog.

ANI 400 Cinematic Animation (3 Cr.)
 Prerequisite(s): ANI 350, ART 401, \& FLM 275

This course is a culmination of the student's ability to use animation as a storytelling medium. It also provides an opportunity for the student to demonstrate his or her personal artistic growth. Each student works to complete a short piece of cinematic animation. Working independently or in small groups with the instructor's approval, students may use either 2D or 3D tools.

ANI 450 Advanced Animation Portfolio (3 Cr.) Prerequisite(s): ANI 350, CG 300, \& PRJ 350

This class requires students to further extend their portfolio work, principally polishing and refining elements that will align them well for current industry needs. With a generous selection of assignment opportunities to be explored, students gain advanced instruction on more focused 'acting', 'physicality', and 'creature' animation. This class provides students with an ideal opportunity to improve an area of their portfolio work that will better represent animated 'body mechanics' and 'acting' skills.

Film Courses

FLM 115 History of Film and Animation (3 Cr.) Prerequisite(s): None

This course examines the more than 100-year history of film and animation. Beginning with the scientific and technical advances that made these media technologies possible, students explore every major movement and genre as well as their impact on society. The course gives students critical vocabulary required for explaining story, animation and cinematic techniques.

FLM 151 Visual Language and Film Analysis (3 Cr.)

Prerequisite(s): None

Animation is ultimately "film making," and animators should learn from the many classics on how to effectively bring various film production elements together. Students review several films and study how the relationships between scripts, cameras, lighting, sets, production design, sound, acting, costumes, props, directing, and production lead to successful visual stories. They also examine the fundamental theories underlying visual storytelling. Understanding the creative processes utilized by these influential filmmakers provides insight into how students may improve their own animations.

FLM 152 Introduction to Visual Storytelling (3 Cr.)
 Prerequisite(s): None

Students will review films and study how the relationships between scripts, cameras, lighting, sets, production design, sound, acting, costumes, props, directing, and production lead to successful visual stories. They will also examine the fundamental theories underlying visual storytelling. Ultimately, students will gain insight into effective cinematic sequences. Not for BFA, BAGD and BSGD students.

FLM 201 Cinematography (3 Cr.)
 Prerequisite(s): FLM 151

Like a filmmaker, computer animators must have a good understanding of appropriate camera composition, lighting and editing techniques to enhance the visual impact of the story being told. Appropriate composition and camera movement help to reveal action, and lighting establishes focus, place, and mood.. Assignments in camera composition, movement, lighting and editing help students solidify their understanding of the concepts presented.

FLM 210 Cinematography for Visual Effects (3 Cr.)
 Prerequisite(s): FLM 151

This course focuses on the technical aspects of cinematography including understanding how cameras work, how images are captured and processed, computer graphics theory, and image analysis. Emphasis is on digital imagery.

FLM 215 Visual Effects Analysis and Process (3 Cr.)
 Prerequisite(s): FLM 151

This course explores the history of visual effects in film and how the craft has developed in terms of technology and processes. Students also examine the fundamental production pipeline for the planning and execution of visual effects.

FLM 250 Digital Post-Production (3 Cr.)
 Prerequisite(s): FLM 151

The last step of any animation project involves the assembly of various production elements ranging from rendered files to sound effects. This is also the stage where the visual effects artists add the effects seen in today's movies. This course teaches the fundamental skills these artists use in postproduction. Effective editing skills are the primary outcome of the course. Students will also cover the planning, execution, and addition of special effects to animation.

FLM 275 Fundamentals of Music and Sound Design (3 Cr.)
 Prerequisite(s): None

Every good animation relies on a well-designed soundtrack to enhance the production. While most animators do not produce the soundtrack themselves, they need to understand the effect of music, voice, and sound effects on an audience. Animators must be able to communicate their ideas to a musician and understand the technological possibilities of modern sound design. Initially students survey a broad range of music from different cultures. Emphasis is on developing basic listening skills in hearing rhythm, melody, harmony, color, texture, and form. Students then learn how to apply this to the production needs of animation. The course gives special attention to the generation of sound, how to use sound to advance a story, and how it can create mood, a sense of place, and emphasis.

There may be course fees associated with this class. Please see the course registration packet for details.

FLM 350 Compositing I (3 Cr.)

Prerequisite(s): CG 201, FLM 210 \& FLM 215
This course introduces students to two key areas of compositing -- image preparation (e.g., rotoscoping, blue/ green screen, masks, wire removal) and compositing software (layer-based, node-based). Students apply this knowledge to basic 2D compositing, as well as motion tracking and color correction.

FLM 360 Compositing II (3 Cr.)
 Prerequisite(s): CG 275 \& FLM 350

This advanced compositing course focuses on the integration of 3D elements into live action footage. Concepts covered include image stabilization, lighting, green screen setup and shooting, match moving, camera tracking, and body tracking.

Projects Courses

PRJ 201 2D Animation Production (5 Cr.)

Prerequisite(s): ANI 151 \& ART 125
This is a traditional animation course within the context of a two-semester project. This project builds on the cumulative skill sets acquired in ANI 101 and ANI 151, but with a focus on team dynamics, acting, visual storytelling, and the goal of completing a short animated film rather than a series of learning exercises. PRJ 201 concentrates on pre-production for the project.

PRJ 251 2D Vector Animation Production (5 Cr.)

Prerequisite(s): PRJ 201
This is a traditional animation course within the context of a two-semester project. This project builds on the cumulative skill sets acquired in ANI 101 and ANI 151, but with a focus on team dynamics, acting, visual storytelling, and the goal of completing a short animated film rather than a series of learning exercises. Building on the work completed in PRJ201, PRJ251 concentrates on the production and animation for the project.

PRJ 300 Limited-Scope 3D Production (5 Cr.)
 Prerequisite(s): CG 275 \& PRJ 251

PRJ 300 addresses two of the more serious affective learning challenges facing commercial animators: professional focus and realistic expectations. The goal of this course is to build on the experience gained in production pipeline procedures in PRJ 201/251 as well as the modeling and animation skills developed in CG 225 and CG 275. Students apply skills learned concurrently in ART 300 and CG 300 to produce an animated short film of limited duration.

PRJ 350 3D Animation Production (5 Cr.)
 Prerequisite(s): ART 300, CG 300, \& PRJ 300

PRJ 350 picks up where PRJ 300 left off in further developing design and production skills. The course is a full-semester project where students will produce a short animated production that demonstrates their skills in design, modeling, animation, lighting and rendering.

PRJ 400 Capstone Project I (5 Cr.)

Prerequisite(s): ART 350, ENG 116, PRJ 350, \& Senior class standing

Working effectively as producers, the Animation Faculty team will select from student submissions one or more team projects to be produced. They then assign students to specific teams, based upon their artistic strengths and career goals. Wherever possible, individual students are introduced to specialist advisers from outside the faculty.

Each student's individual effort is assessed as well as the overall teamwork and professional success of the team. As in a professional work environment, student teams are not allowed to exclude individual members due to production conflicts or performance. The faculty alone retains the right to remove a team member for failure to perform.

PRJ 450 Capstone Project II (5 Cr.)
 Prerequisite(s): ART 401, PRJ 400, \& Senior class standing

Having completed the pre-production work for a team-based animated production in PRJ 400, students then complete final rendering and post-production. Students face the challenges of commercial art direction, quality control, production deadlines, and team dynamics, as well as the many technical challenges.

DEPARTMENT OF COMPUTER SCIENCE

Computer Science Courses

CS 101 Introduction to Computer Environment (1 Cr.)
Prerequisite(s): None
This course provides students with an introductory overview of the fundamental elements on which computers are based. Topics covered by the curriculum include basic computer hardware systems, operations, and structures. An introduction to basic programming logic is also included. This knowledge provides students with a well-rounded overview of how computers operate.

CS 102 Computer Environment (4 Cr.)
 Prerequisite(s): None

This course provides an introduction to digital computer organization. Topics covered include basic electricity, electrical circuits, encoding of numeric and non-numeric data, digital systems, logic circuits and algebra, arithmetic and logic unit, memory unit, basic computer architecture and introduction to operating systems. The outcome of this course is to provide students with sound knowledge of the fundamental building blocks of the functional units of digital computer systems.

CS 115 Introduction to Scripting and Programming (3 Cr.)

Prerequisite(s): CG 350
This class introduces programming environments to students who are not experienced programmers. This course covers simple logic, programming flow, and the use of variables. It introduces students to the history of programming and the basic vocabulary of the programming industry. The course culminates in a series of hands-on exercises using this knowledge to solve problems. At his or her discretion, the instructor may cover special topics in programming or scripting. Credit may be received for CS 115 or for CS 120, but not for both.

CS 120 High-Level Programming I - The C Programming Language (3 Cr.)
 Concurrent Course(s): CS 120L

In presenting the C programming language, this course serves as a foundation for all high level programming courses and projects. It provides the fundamentals of programming, including control flows, such as statement grouping, decisionmaking, case selection, procedure iteration, and termination test and basic data types, such as arrays, structures, and pointers. Additionally, it intensively discusses the lexical convention, syntax notation, and semantics.

CS 120L High-Level Programming I Lab (1 Cr.) Concurrent Course(s): CS 120

CS 120 L is the lab component of the introductory High-Level Programming I course. Students meet for two hours weekly to apply the concepts presented in CS 120 in a lab environment.

CS 170 High-Level Programming II - The C++ Programming Language (3 Cr.)
 Prerequisite(s): CS 120
 Concurrent Course(s): CS 170L

This course is a continuation of High Level Programming I (CS 120). It introduces the C++ language with particular emphasis on its object-oriented features. Topics covered include stylistic and usage differences between C and C++, namespaces, function and operator overloading, classes, inheritance, class and function templates, STL lists, and vectors. Concurrent enrollment in CS 170L is required.

CS 170L High-Level Programming II Lab (1 Cr.) Concurrent Course(s): CS 170

CS 170L is the lab component of the High-Level Programming II course. Students meet weekly to work on topics presented in the CS 170 lectures in a lab environment.

CS 180 Operating System I, Man-Machine Interface (3 Cr.)

Prerequisite(s): CS 101 or CS 102, CS 120 \& CS 120L
This course presents an overview of modern operating systems, in particular Windows and Linux/Unix as implemented on modern PCs. After an overview of what an operating system is and does, the following is also covered: organization and design (the kernel and various subsystems), process management (creation and management of processes and threads, including an introduction to multi-threaded programming), networks (the TCP/IP stack and the organization of the Internet), interprocess communication, process synchronization (locks, semaphores, and methods to avoid deadlocks), memory management (hardware and process views of memory layout and demand-paged virtual memory), file systems, and security and protection (viruses, worms, and Trojan horses).

CS 200 Computer Graphics I (3 Cr.)

Prerequisite(s): CS 170 \& MAT 140

CS 200 presents fundamental mathematical elements, data structures, and algorithms useful for animating and viewing two dimensional primitives. The course aims to fulfill two objectives. The first objective is to provide students with a sufficient mathematical and algorithmic background to design and implement 2D graphics applications. The second objective is to prepare students with the knowledge required for writing three dimensional graphics applications. The first half of the course deals with scan-conversion algorithms for rasterizing 2D primitives such as lines, circles, ellipses, triangles, and arbitrary polygons. The second half of the course is concerned with the viewing and animation of these 2D primitives. The course covers topics such as interpolation techniques, transformations, culling, clipping, animation techniques, and the 2D viewing pipeline.

CS 225 Advanced C/C++ (3 Cr.)
 Prerequisite(s): CS 170

This course builds on the foundation created in the first two high-level programming courses (CS 120/170). It presents advanced topics of the C/C++ programming language in greater detail. Such topics include advanced pointer manipulation, utilizing multi-dimensional arrays, complex declarations, and standard library functions. Advanced C++ topics include class and function templates, operator overloading, multiple inheritance, runtime type information, the standard template library, and performance issues.

CS 230 Game Implementation Techniques (3 Cr.)
 Prerequisite(s): CS 120
 Concurrent Course(s): CS 170

CS 230 presents game implementation techniques and engine architecture. Students investigate foundational concepts of game architecture, such as game-system component separation and game flow, while learning about essential elements such as the game state manager, input/ output handler, and frame rate controller. CS 230 introduces Windows programming, state machines, and collision detection algorithms, which students will integrate into their own remakes of classic games. As part of their implementation, students create and expand their own collision, vector, and matrix libraries, enabling them to incorporate basic physics engines. Students survey concepts in space partitioning, particle systems, map editors, and other elements as a bridge to more advanced concepts in implementation techniques and engine architecture.

CS 245 Introduction to Interactive Sound Synthesis (3 Cr.)

Prerequisite(s): CS 170, CS 180, MAT 140 \& PHY 200
This course explores dynamic sound synthesis, 3D-directional auditory effects, and sonic ambience to real-time simulations and video games. The subjects include mixing audio and modulating dry recorded sounds using wave table synthesis. Students learn how to create collision sounds using additive synthesis, wind effects using subtractive synthesis, natural sounds using granular synthesis and physical modeling, ambiences using layering and spectral filtering, 3D spatialized surround sound panning, inter-aural time difference, inter-aural intensity difference, and Head Related Transforms (HRTFS). Students also study algorithms and techniques for real-time multi-threaded programming and synthesized sound integration for game engines.

CS 250 Computer Graphics II (3 Cr.)

Prerequisite(s): CS 200

CS 250 examines the mathematical elements and algorithms used in the design and development of real-time 3D computer graphics applications, such as games, cockpit simulators, and architectural walk-throughs. 3D computer graphics involve drawing pictures of 3D objects, usually on a 2D screen. This process of generating a 2D image of a 3D graphics application can be described as a series of distinct operations performed on a set of input data. Each operation generates results for the successive one. This process is called the graphics rendering pipeline, and it is the core of real-time computer graphics. The graphics pipeline can be conceptualized as consisting of three stages: application, transformation, and rasterization. The course begins by introducing the 3D graphics pipeline. The application stage is examined from the viewpoint of the representation, modeling, and animation of 3D objects. Topics include user interaction, camera animation techniques, simulation of dynamic objects, and collision detection techniques. Next, the course examines the process of mapping 3D graphic objects from model-space to viewport coordinates. The transformation stage implements this process. Finally, the conversion of a geometric primitive in viewport coordinates into a 2D image is studied. The rasterization stage implements this final process.

CS 260 Computer Networks I, Interprocess Communication (3 Cr.)

Prerequisite(s): CS 170
This course introduces the hierarchical network communication in a distributed computing environment. Course topics cover network technologies, architecture, and protocols. The curriculum gives specific emphasis to the TCP/IP stack and in making students familiar with writing portable socket based software. It prepares students for programming multi-player games in later semesters.

CS 261 Computer Networks II (3 Cr.)

Prerequisite(s): CS 260

This class extends the TCP/IP protocols studied in CS 260 to wireless devices. This course goes further in depth into some topics covered in the introductory networks course, as well as additional subjects of interest. Topics include TCP/IP related protocols, (such as NAT, WAP, and DNS), physical media access, (such as aloha, OFDM, and WIDEBAND), wireless standards and protocols and network security. The curriculum covers additional topics based on the state of the industry.

CS 280 Data Structures (3 Cr.)

Prerequisite(s): CS 225
This course introduces the classical abstract data types (ADT) in computer science. ADTs provide the hierarchical views of data organization used in programming. Among the topics covered are the algorithms and primitives of the data structures for arrays, linked lists, stacks, queues, trees, hash tables, and graphs. In addition, the course provides an introduction to algorithm complexity and notation.

CS 300 Advanced Computer Graphics I (3 Cr.)

Prerequisite(s): CS 250

This course introduces students to algorithms that are essential to creating photorealistic images in interactive simulations. Topics covered include an overview of modern GPU (graphics processor unit) architecture and the common graphics APIs used, including OpenGL and DirectX. Rendering techniques covered include texturing, illumination models, transparency, shading algorithms, mapping techniques (bump mapping, environment/reflection mapping, etc.), and shadows. Students learn how to implement all algorithms by using vertex and pixel shaders.

CS 311 - Introduction to Databases (3 Cr.)

Prerequisite(s): CS 170

This course provides students with a broad overview of database systems. It presents the fundamentals, practices, and applications of computer databases. Topics include database architectures, data modeling, design schemes, relational algebra, query languages, transaction processing, and database implementation. Students will explore massively multiplayer online games (MMOG) to examine a case study of database design and implementation.

CS 315 Low-Level Programming (3 Cr.)
Prerequisite(s): CS 100, CS 100L, CS 120, CS120L \& CS 180

This course introduces students to modern microprocessor architectures using x86 series for case studies. In this course, students are expected to write both assembly language programs and to use assembly language to optimize various C/C++ programs. Topics may include pipelining, superscalar/ VLIW machines, register-renaming, out-of-order execution, multi-core architecture, caches, multicore-cache coherency, x86 instruction set architecture, application binary interfaces, Flynn's taxonomy, and Streaming SIMD extensions.

CS 330 Algorithm Analysis (3 Cr.)
Prerequisite(s): CS 225, CS 280, \& MAT 200 or MAT 230

This course provides students with an introduction to the analysis of algorithms, specifically proving their correctness and making a statement about their efficiency. Topics for discussion may include loop invariants, strong mathematical induction and recursion, asymptotic notation, recurrence relations, and generating functions. Students examine examples of algorithm analysis from searching and sorting algorithms.

CS 350 Advanced Computer Graphics II (3 Cr.) Prerequisite(s): CS 300

This course deals with the efficient representation and processing of complex 3D scenes in order to avoid bottlenecks in the use of the CPU and the GPU. Specific topics include a variety of spatial data structures (binary space-partitioning trees, octrees, kd-trees, and grid data structures), several object-culling methods (occlusion, viewport, and portal), and finally the construction and uses of bounding volumes and their hierarchies for collision detection and related geometric operations.

CS 365 Software Engineering (3 Cr.)

Prerequisite(s): CS 225

This course covers a wide range of topics in software engineering from the practical standpoint. It encompasses project management issues as well as technical development principles and methods. Topics include system architecture, security, methodologies and notation, UML, object oriented analysis and design, requirements analysis, implementation, verification, validation, maintenance, and software engineering standards. Risk management and iterative design receive special emphasis. Student teams apply acquired knowledge to a substantial project.

CS 370 Computer Imaging (3 Cr.)

Prerequisite(s): CS 280

The course is taught at the upper division/graduate level and, brings image analysis and image processing into a unified framework that provides a useful paradigm for both computer vision and image processing applications. Course material covers methods students can apply in creating special effects with digital images and preparing graphics information for either human or computer interpretation. Course content covers both image processing, which transforms an image, and computer vision, which extracts a measurement or description.

CS 371 - Advanced Computer Imaging (3 Cr.) Prerequisite(s): CS 370

This course introduces the Computer Vision pipeline. Students learn, and implement state-of-the-art methods in Image Analysis, Feature Detection, Face Recognition and Computational Photography. This course provides computational skills that are complementary to the Computer Graphics curriculum and reinforces the larning activity with a hands-on implementation approach.

CS 380 Artificial Intelligence for Games (3 Cr.)
 Prerequisite(s): CS 225, CS 280

This course introduces students to a wide range of concepts and practical algorithms that are commonly used to solve game AI problems. Case studies from real games are used to illustrate the concepts. Students have a chance to work with and implement core game AI algorithms. Topics covered includes the game Al programmer mindset, AI architecture (state machines, rule-based systems, goal-based systems, trigger systems, smart terrain, scripting, message passing, and debugging AI), movement, pathfinding, emergent behavior, agent awareness, agent cooperation, terrain analysis, planning, and learning/adaptation.

CS 381 Machine Learning (3 Cr.)
 Prerequisite(s): CS 280

This course deals with constructing computer programs that automatically improve with experience. Observed events are used to inductively construct decision trees, which can be used by computer-controlled game characters to change behaviors. Students explore concept learning, partial ordering, reinforcement learning, conditional probability, Bayesian learning, the evaluation of hypotheses and instance-based learning. Types of neural networks examined include perceptrons, back-propagation, radial basis functions, and adaptive resonance theory. The effectiveness of genetic algorithms and power of a neuro-genetic approach are demonstrated. The class concludes by looking at inductive analytical learning..

CS 388 Introduction to Portable Game System Development (3 Cr.)

Prerequisite(s): CS 250 \& GAM 250
This course introduces students to portable game systems programming and development, which is different from PC programming and development due to the embedded structure of the machine. Students work with a very limited amount of memory and CPU power. To overcome the system's memory limitations, several graphics techniques are used, such as tile based game objects and backgrounds using color palettes. As for the CPU limitations, fixed point decimal is used instead of float numbers, along with asynchronous operations. Several portable game system specific topics, such as managing multiple graphics engines simultaneously and handling the touch pad are discussed.

CS 391 Code Analysis and Optimization (3 Cr.) Prerequisite(s): CS 280 \& CS 315

This course focuses on understanding the details of the computer, compiler, and language, specifically how to apply these toward the practical problem of solving crashes and performance issues. The emphasis is not only on knowing what and why, but also on taking that knowledge and creating useful tools and techniques for solving these problems.

CS 399 Special Topics in Computer Science (3 Cr.)

Prerequisite(s): Permission of instructor
The content of this course may change each time it is offered. It is for the purpose of offering a new or specialized course of interest to the faculty and students that is not covered by the courses in the current catalog.

CS 420 Graphics File Format and Data Compression Techniques (3 Cr.)
 Prerequisite(s): CS 250 \& CS 280

This course covers data compression techniques for still images and multimedia. Students learn the theory behind data compression and how it is used in specific formats. Methods covered include run-length encoding, Huffman coding, dictionary compression, transforms, and wavelet methods. Students learn these techniques by examining various popular graphic file formats such as BMP, JPEG, DXTn, and MPEG.

CS 460 Advanced Animation and Modeling I (3 Cr.)

Prerequisite(s): CS 300, CG 130, \& MAT 300
3D animation and modeling play significant roles in computer simulation and video game software. Game developers need to have a comprehensive understanding of these techniques. This course introduces algorithms for specifying and generating motion for graphical objects. It addresses practical issues, surveys accessible techniques, and provides straightforward implementations for controlling 3D moving entities with different characteristics. The class covers two broad categories.
Students will first learn an interpolation-based technique, which allows programmers to fill in the details of the motion or shape once the animator specifies certain basic information, such as key frames, paths, coordinate grids, or destination geometry. Then they learn a behavior-based technique, which generates motion that satisfies a set of rules, such as kinematics, physics, or other constraints.

CS 488 Introduction to Console Development (3 Cr.: 2 credits lecture, 1 credit lab)

Prerequisite(s): GAM 250 \& CS 250

This course introduces students to the game development process on a gaming console platform. It covers both the technical features and design considerations of console development. Topics covered include an overview of game console hardware and comparison with the PC environment, memory management, asynchronous data loading, graphics API, reading optical and motion sensor data, optimization, and NAND data management. As students learn the material, they work on a game project that takes advantage of the unique capabilities of gaming consoles.

DEPARTMENT OF
DIGITAL ARTS

Computer Graphics Courses

CG 102 2D Raster and Vector Graphics for Designers (3 Cr.)
Prerequisite(s): ART 126
Concurrent Course(s): CG 125

This course introduces students to industry-standard software and practices of raster graphics and animation. The course begins with basic information, such as interface organization strategies, system components, bit depth, resolution, memory management, and output strategies. Then it explores techniques and critical thinking skills for digital painting, scanning, character development and animation for 2D games. Additionally, it looks at basic interface customization options and strategies in 2D raster graphics.

CG 125 Introduction to 3D Production for Designers (3 Cr.)
 Prerequisite(s): ART 125 or ART 126 Concurrent Course(s): CG 102

This course introduces game design students to current software and production process of 3D animation, with a focus on implementing the art assets into a game engine. The course begins with basic information, such as interface organization strategies, equipment options, and production elements. The class also introduces techniques for texture mapping, modeling, rigging, lighting, cameras, and animation. Additionally, it looks at basic interface customization options and strategies in 3D graphics, culminating in a series of applied problems in 3D production techniques.

CG 130 3D Computer Animation Production I (3 Cr.)

Prerequisite(s): None
This course introduces students to the basic theories and techniques of 3D computer animation. The curriculum emphasizes standard 3D modeling techniques, including polygonal and spline modeling, texture map creation and application, keyframing, and animating through forward kinematics and inverse kinematics. (Earlier catalogs listed this course as GAT 300.)

CG 135 3D Computer Animation Production II (3 Cr.)
 Prerequisite(s): CG 130

This course builds on the fundamentals taught in CG 130. Students learn about key framing, special effects, final rendering, and recording. (Earlier catalogs listed this course as GAT 350.)

CG 175 Introduction to 3D Character Animation for Designers (3 Cr .)

Prerequisite(s): CG 102 \& CG 125
This course introduces students to the basics of character design and animation. Students are introduced to the 3D character animation pipeline in progressively more complex sequences. Each iteration goes through the same basic principles of creating, editing, material/mapping, rigging, skinning, animating, camera/lighting setup, and implementation of the assets into a game engine.

CG 201 2D Raster Graphics and Animation (3 Cr.)
 Prerequisite(s): ANI 151, ART 101, \& ART 125

This course introduces students to the industry-standard software and practices of raster graphics and animation. The course begins with basic information, such as interface organization strategies, system components, bit depth, resolution, memory management, and output strategies. It also explores techniques and critical thinking skills for digital painting, scanning, still compositing, and texture creation. Additionally, it looks at basic interface customization options and strategies in 2D raster graphics.

CG 225 Introduction to 3D Animation (3 Cr.)

Prerequisite(s): ANI 151, ART 101, \& ART 125
This course introduces students to industry-standard software and practices of 3D animation. The course begins with basic information such as interface organization strategies, equipment options, and production elements. It also introduces techniques and critical thinking skills for texture mapping, modeling, rigging, lighting, cameras, and animation. Additionally, it looks at basic interface customization options and strategies in 3D graphics, culminating in a series of applied problems in 3D production techniques

CG 251 2D Vector Graphics and Animation (3 Cr.)
 Prerequisite(s): CG 201

This course examines the principles and practices of 2D vector graphics and animation. It introduces students to industry standard software, output options, and production strategies for using vector graphics in both graphic design and animation. The course gives special consideration to critical thinking and refinement strategies when modifying vector images. Students examine methods of using vector-based tools for creating web and broadcast animation, and the course concludes with a series of applied problems in 2D vector animation.

CG 275 3D Character Animation (3 Cr.)

Prerequisite(s): CG 105 or CG 225

Students continue to explore and exercise the concepts and techniques of 3D animation through a series of assignments applied to characters. Exercises in this course are considerably more demanding than those completed in CG 125 as they are longer and require more refinement, subtlety, and creativity. The course emphasizes character development - the expression of personality, mood, thought, and attitude through motion and posing. It also gives special consideration to proper model rigging.

CG 300 3D Environment and Level Design (3 Cr .)

Prerequisite(s): CG 275
This course introduces students to the principles of 3D environment design. Theatrical sets, architectural simulations, and level design are considered. In order to provide students with a broader skill set, this course also presents the "mechanics" of how to use other 3D animation software, with an emphasis on the unique strengths of the package. Students explore the comparative strengths of different software packages and the impact that this has on workflow. The course emphasizes critical thinking skills and strategies for tool selection.

CG 301 3D Environment Design for Games (3 Cr.)

Prerequisite(s): ART 310, CG 102, \& CG 125
This course provides game design students with an understanding of the design and production process of environments for 3D games. It introduces the principles of 3D environment creation and provides a functional working knowledge of modelling, texturing and lighting skills within the framework of a 3D modelling package to create believable and well-designed environments. Student work is implemented into a game engine.

CG 303 Hard Surface Modeling and Texturing (3 Cr.)

Prerequisite(s): CG 275
Building on the knowledge and skills for modeling taught in CG275 "3D Character Animation," this course focuses on the process for optimized modeling and texturing of non-organic scene elements including architecture, props, and vehicles. Students are also introduced to digital sculpting for hard surface models.

CG 305 Digital Sculpture (3 Cr.)

Prerequisite(s): CG 275

This course introduces an array of digital modeling, sculpting, and painting techniques with a set of industry-standard 3D and 2D tools. After a series of exercises, students learn the tools and workflow of digital sculpting and enhance their knowledge of anatomy. As part of this class, students create a highly finished 3D character that is fully designed, modeled, posed, sculpted and textured. They also demonstrate knowledge of environmental sculpting.

CG 315 Texturing for 3D (3 Cr.)

Prerequisite(s): CG 201 \& CG 275
This class focuses on how to generate efficient and accurate texture maps. Students explore techniques for generating landscape, architectural, objects, and character based textures. Topics include: clamped textures, tileable textures, advanced methods for generating normal maps, z-depth, displacement, and emissive type textures. Students will explore UV mapping, unwrapping, multi-layered shaders, animated texturing methods, use of photo reference, manipulation, compositing and other techniques to create complex textures.

CG 320 Materials and Textures (3 Cr.)
 Prerequisite(s): CG 175

This course builds on foundational knowledge from CG 175 and CG 102, delving further into the art and science of painting textures for game characters and environments. Students focus on generating multiple maps for materials to define complex shader properties. Emphasis is placed on effective texture layout and detail for use in games and cinematic applications. Students are also trained on the use of digital sculpting tools that combines 3D/2.5D modeling, texturing, and painting.

CG 340 Game Art Production Tools (3 Cr.)
 Prerequisite(s): CG 320

This course looks beyond 2D digital painting and 3D animation software to introduce students to specialized modeling, texturing, animation, and special effects tools.

CG 350 Graphics for Gaming (3 Cr.)
 Prerequisite(s): CG 300

This course examines the unique problems of creating graphics for games, and it teaches effective production techniques for addressing these issues.

CG 360 Lighting and Rendering (3 Cr.)
Prerequisite(s): FLM 350
CG artists must develop strong lighting skills. This course looks at the subject through the world of film cinematography and covers the process of lighting both interior and exterior virtual environments. At the technical and aBSCStic levels, students explore rendering techniques and strategies that efficiently produce a more convincing result.

CG 399 Special Topics in Computer Graphics (3 Cr.)

Prerequisite(s): CG 275
The content of this course may change each time it is offered. It is for the purpose of offering a new or specialized course of interest to the faculty or students that is not covered by the courses in the current catalog.

CG 400 Advanced 3D Modeling Techniques (3 Cr.)

Prerequisite(s): CG 275
This course focuses on the design and production of highly detailed models for use in feature and broadcast animation. Students use a best-of-breed approach to define their tool set, with particular emphasis placed on organization and structure. Additional emphasis is placed on generating layered digital intermediate files for use in a model-composite workflow in a desktop production environment. Lectures also cover environment and character design research as relevant to detail modeling, presented in a framework of industry-standard geometries and methods. Students also explore advanced material creation using a global illumination-capable rendering engine, incorporating advanced texture creation techniques.

CG 410 Effects Animation (3 Cr.)
 Prerequisite(s): CG 360 \& FLM 360

This course explores the technical and creative elements required to rig and animate effects. Topics include animating particle effects, fluids, soft and rigid body dynamics. Students are required to integrate the various effects into a live action shot.

DEPARTMENT OF FINE ARTS

Art Courses

ART 101 The Language of Drawing (3 Cr.)
Prerequisite(s): None
Credit may be received for either ART 101 or ART 102, not both.

This course explores the nature of drawing as a language skill and the use of drawing by production artists and animators. Applied drawing goals and critical thinking skills are given special consideration. Students are introduced to basic professional habits in drawing practice, drill, and play. Design principles, basic research, and the design process are introduced and applied to a series of practical problems. This course also explores basic drawing materials, drawing strategy, drawing sequence, linear drawing methodology, practice, and theory.

ART 102 Fundamentals of Visual Expression (3 Cr.)
 Prerequisite(s): None
 Credit may be received for either ART 101 or ART 102, not both.

Students will be introduced to simple drawing techniques, constructed linear perspective, visual design methodology, and drawing vocabulary through lectures, studio assignments, and simple projects.

ART 115 Art and Technology (4 Cr.)
 Prerequisite(s): None

This course provides an overview of art history from Paleolithic times until the modern day. It traces the technological advances of society and art and considers the interplay between art and technology. Classical art materials and methods are examined, and students explore how art has historically impacted society. This course has a worldwide scope and is not limited to just European and Western traditions

ART 125 Tone, Color, and Composition (3 Cr.) Prerequisite(s): ART 101
 Credit may be received for either ART 125 or ART 126, not both.

This course continues to build upon students' abilities to draw by exploring the nature and use of tone, color, and composition in drawing. It emphasizes methods of creating tone, ways to use luminance as an organizational element, and the importance of thinking critically. Additionally, the course introduces students to a variety of classical tonal systems and tonal illusions, including atmospheric perspective, sculptural modeling, basic direct lighting, lighting position relative to viewpoint, light intensity, local value, and reflectivity. Students then explore the artistic use of color. The course covers systems and traditions of organizing hue and saturation, and it examines methods of building from tonal preliminary studies. Students also explore classical forms of compositional organization, such as symmetry, asymmetry, golden mean, and figure-ground relationships.

ART 126 Principles of Composition \& Design (3 Cr.)

Prerequisite(s): ART 101 or ART 102
Credit may be received either ART 125 or ART 126, not both

This course continues to build students' abilities to draw by exploring techniques for producing finished drawings, quick explanatory sketches, and rapid visualizations. Methods for use of tone and color to convey mood and atmosphere are covered. Basic graphic design and typography are taught with particular emphasis on interface design. Classical forms of compositional organization, such as symmetry, asymmetry, golden mean, and figure ground relationships, are also explored.

ART 151 Basic Life Drawing (3 Cr.)
 Prerequisite(s): ART 101

This course introduces students to the challenges of drawing the human form for animation. Students examine life drawing for animation in addition to methods for attaining these goals. The course emphasizes capturing skeletal structure, muscle form, emotion, and gesture. By drawing clothed and nude models of both genders, students learn to apply lessons in anatomy to the figure, significantly expanding their understanding of human kinetics and structure. Additionally, students practice extrapolating basic human life drawing strategies to other animals.

ART 155 Basic Life Drawing and Anatomy (3 Cr.)
 Prerequisite(s): ART 101

This course introduces students to the challenges of drawing the human form for animation. Students examine the goals of life drawing for animation, and the instructor demonstrates methods for attaining these goals. Additionally, students will study human skeletal and muscular anatomy and learn to apply this knowledge to drawing. The course emphasizes capturing skeletal structure, muscle form, emotion, and gesture. By drawing clothed and nude models of both genders, students learn to apply lessons in anatomy to the figure and significantly expand their understanding of human kinetics and structure. Finally, they practice extrapolating basic human life drawing strategies to drawing animals.

ART 201 Advanced Life Drawing (3 Cr.)
 Prerequisite(s): ART 125 \& ART 151

This course builds upon the anatomy and drawing courses students have already taken. Students continue to improve their ability to capture kinetics in humans and animals. By engaging in a series of exercises designed to enhance their visual memory, students build the foundation for drawing accurate figures from their imagination. They also explore putting the figure into an environment, figurative composition, and introductory sequential figurative composition.

ART 205 Character and Environment Design (3 Cr.)
 Prerequisite(s): ART 155

Students apply their drawing and anatomy knowledge to the creation of animation characters. The course introduces traditions of character design and the basic structural strategies for creating animation characters. Students explore simplification gradients relative to human, animal, and inanimate object-based characters. The course also covers issues of costume, personality, and story interaction. Additionally, students learn to place these characters into appropriately designed environments. The curriculum emphasizes professional applications, techniques, and standards of quality.

ART 210 Art Appreciation (2 Cr.)

Prerequisite(s): None
This introduction to art provides students with a better understanding of the artistic influences upon our modern culture. Along with the history of art, students study the meanings, purposes, styles, elements, and principles of art and the various media used to create works of art. In helping students gain basic awareness, knowledge, and enjoyment of the visual arts, the course provides the groundwork for further personal study in the arts. In turn, this influences the development of their creativity

ART 225 3D Design and Sculpture (3 Cr.)
 Prerequisite(s): ART 201

This course introduces students to the principles of 3D design using both traditional and digital tools. Students become acquainted with additive, subtractive, and cast sculpture. They consider the basic concepts of architectural space, interior design, landscape design, surface interplay with light, lofted forms, and skinning systems. Students use modern polymer clays and build an animation maquette.

ART 226 Gesture Drawing for Animation (3 Cr.) Prerequisite(s): ART 101, ART 151, \& BIO 150

In this class, the student is provided with significant time in front of live moving models. The main purpose of drawing moving models is to describe what the model is doing as opposed to what the form of the model is. All aspects of the drawing, including form, line, silhouette, details and most importantly, line of action, concentration on communicating visually what the model is doing and/or thinking. The course focuses on weight, depth, balance, tension, rhythm and flow.

ART 228 Figurative Sculpture (3 Cr.) Prerequisite(s): ART 101 \& BIO 150

This course introduces students to the challenges of sculpting the human figure from life. Using traditional techniques to build an armature and complete a sculpture in clay, students enhance their understanding of the human form in 3D space. Emphasis is placed on gesture, proportion, and anatomy, as well as developing a strong sense of form and volume.

ART 230 Painting (3 Cr.)
 Prerequisite(s): ART 125

This course explores ideas and various techniques related to painting. The use of color and the representation of space is emphasized. Students explore masterworks, studio painting, and painting en plein aire. Technical and social problems related to painting are explored using portraiture, still life, and environment/landscape. A portable field easel and appropriate painting supplies will be required. The course will culminate in a group show of student projects.

ART 234 Survey of Sequential Art (3 Cr.)
 Prerequisite(s): ART 125 or ART 151

In this course, students will learn to explore and to exploit the power of sequential images as a medium to craft stories beyond storyboarding, photography, and film. Through the formats of the graphic novel and related forms, students will tackle problems of character and events; their solutions will be limited only by their imaginations. The course will begin with an historical overview of sequential art and will then examine storytelling through pictures, focusing on clarity and emotional impact. Students will examine contemporary styles and conventions and will be required to draw from previous art experiences, while honing their skills in drawing, perspective, design, color, typography, writing, editing, and acting. Demonstrations of multimedia techniques and computer technology relative to this field will also be introduced.

ART 251 Character Design (3 Cr.)
 Prerequisite(s): ART 201

Students leverage their drawing and anatomy knowledge to the creation of animation characters. This course introduces student to the traditions of character design and the basic structural strategies for creating animation characters. Students explore simplification gradients relative to human, animal, and inanimate object-based characters. They consider issues of costume, personality, and story interaction. The course emphasizes professional applications, techniques, and standards of quality. The work completed in this course serves as pre-production design for PRJ 300, PRJ 350, or ANI 300.

ART 260 Graphic Design, User Experience, and Input (3 Cr.)

Prerequisite(s): None
Students explore elements of visual design and apply them to computer user interfaces. They analyze various types of sensory interfaces and improve their skills in creating representations of information valuable to a system user. Additionally, emphasis is be placed on the overall enjoyment of the user experience, plus consideration towards relating the user experience to the theme of the game or system. Students learn how to use various industry-standard languages related to prototype interfaces.

ART 299 Special Topics in Art (2 Cr.)
 Prerequisite(s): Permission of instructor

The content of this course may change each time it is offered. It is for the purpose of offering a new or specialized course of interest to the faculty or students that is not covered by the courses in the current catalog.

ART 300 Perspective, Backgrounds, and Layouts (3 Cr.)

Prerequisite(s): None
This course explores the animation pre-production skills of background and layout art. Students review classical depth cue and perspective systems and apply this knowledge to the creation of animation backgrounds and layouts. Additionally, students explore means of using drawing to create camera lens illusions, architectural space, theatrical sets, level design, matte painting, and surface texture. The course emphasizes professional applications, techniques, and standards of quality. The work completed in this course serves as pre-production design for PRJ 300, PRJ 350, or ANI 300.

ART 301 Concept Art Resources (3 Cr.)
 Prerequisite(s): ART 251, CG 201 \& CG 275

This course builds upon all art disciplines, primarily 2D related skills, to prepare students for positions requiring the creation of concept art. Emphasis is placed on the importance of balancing speed of content generation with quality, as this is one of the most pressing and relevant challenges in this field. With this mindset, students are challenged to evaluate and understand new forms of character and environment generation. Both theory and technique are heavily stressed during this course, with the final tangible outcome being multiple portfolio pieces that demonstrate the individual's abilities and unique style/interests.

ART 310 Architectural Spaces, Design, and Lighting I (3 Cr .)

Prerequisite(s): None
This course introduces students to the aesthetics and principles of 2D (floor plans and elevations) and 3D environment design. A survey of architectural styles from throughout the world is blended with concepts, such as emotion, mood, lighting, shadows, aesthetics, and more. The course emphasizes learning the architectural vocabulary as well as the aesthetics of environmental and game-level design. Texturing, spatial design, negative space, dramatic lighting, and other concepts that affect not only the psychology of level design but also gameplay principles are covered. Students participate in numerous field trips to local examples of architecture in order to gain an understanding of architectural spaces and the field's vocabulary.

ART 350 Storyboards (3 Cr.)
 Prerequisite(s): ART 201, ENG 116, \& FLM 151

This course explores the animation pre-production skills of storyboard art. Students leverage their knowledge of drawing, storytelling, and cinematography to create both production and presentation storyboards. They also explore means of using drawing to create story flow, character development, mood, time, and place. The course emphasizes professional applications, techniques, and standards of quality. The work completed in this course serves as pre-production design for PRJ 300, PRJ 350, or ANI 300.

ART 360 Architectural Spaces, Design, and Lighting II - Period Styles (3 Cr.)
 Prerequisite(s): ART 310, CG 301, \& CG 320

This class builds on the foundational skills and knowledge from Architectural Spaces, Design, and Lighting I (ART 310), covering more period styles. Additionally, students have opportunities to do more hands-on creation of art, models, and textures relative to various periods. Students participate in a variety of field trips in order to research and analyze architectural styles and then to build them in the computer lab.

ART 399 - Special Topics in Art (3 Cr.)
 Prerequisite(s): ART 151

The content of this course may change each time it is offered. It is for the purpose of offering a new or specialized course of interest to the faculty or students that is not covered by the courses in the current catalog.

ART 400 Drawing Fundamentals (2 Cr.)
 Prerequisite(s): None

The development of strong drawing skills is of extreme importance since they are essential tools for expressing ideas, particularly during the pre-production stages of an animation project. Therefore, this course presents the basic elements of drawing and graphic design in order to improve the student's practical ability to draw with skill and imagination. It covers methods of observing, describing, and organizing forms using various mediums, such as pencil, charcoal, and color pencils.

ART 401 Conceptual Illustration and Visual Development (3 Cr.)

Prerequisite(s): ART 300

This course explores the animation pre-production skills of conceptual illustration and visual development. Students apply their knowledge of drawing, storytelling, and composition to create speculative drawings for animation. They review compositional systems, design process, and illustration techniques. Additionally, students explore means of using drawing to visually explore story and character ideas from both existing and original story materials. They also consider adaptation, stylization, and visual variety. The course emphasizes professional applications, techniques, and standards of quality. The work completed in this course serves as pre-production design for PRJ 300, PRJ 350, or ANI 300.

ART 405 Matte Painting (3 Cr.)
 Prerequisite(s): ART 401

This course takes the student through the process of designing and painting (traditionally, digitally or both) backgrounds that can be seamlessly integrated with live action footage, animation, and games.

ART 410 Mechanical Drawing (3 Cr.)
 Prerequisite(s): None

Traditional and digital skills in drafting are key components of an engineering career. This course introduces students to the basic skills of mechanical drafting including layout and formatting conventions, typographic traditions, and classical drafting tool usage. Students apply these skills to actual problems in traditional mechanical drafting. They are then exposed to modern digital tools in mechanical drafting. The course explores subjects, such as interface conventions, usage strategies and output options. Students work with a CAD program and complete a variety of exercises designed to establish foundational skills. The course pays special attention to addressing how professionals use these skills in production and prototyping.

ART 450 Portfolio (3 Cr.)
 Prerequisite(s): PRJ 350

Students use this course to compile the elements of their professional portfolio, which will serve as their BFA thesis. Additionally, this course introduces students to the marketing campaign needs of modern animation portfolios, including visual continuity, business documents, traditional still art portfolios, process and practice samples, digital portfolios, web sites, demo reels, and promotional items. They use this knowledge to assemble their own portfolios. The course also covers related information regarding job interviews, trade shows, professional standards, and contract negotiation.

DEPARTMENT OF GAME SOFTWARE DESIGN AND PRODUCTION

Game Projects Courses

GAM 100 Project Introduction (3 Cr.)
Prerequisite(s): None

This class presents an overview of the way the game development industry works and a history of game development. It exposes students to the positions and job responsibilities that each member of a game development team has, along with the industry requirements for concept pitches, design documents and schedules. It also introduces sprite animation, object motion, and input processing, which students use in the creation of a game of their own design.

GAM 150 Project I (3 Cr.)
Prerequisite(s): CS 120 \& GAM 100
Credit may be received for either GAM 150 or GAM 152, but not for both.
This project focuses on the creation of a simple game or simulation. Students work together on teams of three or four members. All projects must be written entirely in C (C++ is not allowed) and cannot use external libraries or middleware of any kind (except those provided by the instructor). Topics include effective team communication, planning, documentation, debugging, source control, testing, and iterative software development techniques.

GAM 200 Project II (4 Cr.)
 Prerequisite(s): CS 170, CS 230, GAM 150, \& MAT 140

This project is divided into two semesters and focuses on the creation of a simple real-time game or simulation with 2D graphics (3D games are not allowed). Students work together on teams of three or four members to implement technical features, such as audio effects, music playback, pattern movement, simple artificial intelligence, same-machine multiplayer (networking is not allowed), particle systems, scrolling, and simple physics. All projects must be written with a core of C++ code and cannot use middleware such as preexisting physics engines, networking engines, etc. Additional topics may include basic software architecture, essential development practices, fundamentals of team dynamics, and task prioritization methods.

GAM 250 Project II (4 Cr.)
Prerequisite(s): CS 225 \& GAM 200
In this class, students work to complete and polish the projects they began in GAM 200. Additional topics may include intermediate software architecture, advanced debugging techniques, bug tracking, formal playtesting, game pacing, and game balance.

```
GAM 300 Project III (5 Cr.)
Prerequisite(s): CS 200, CS 260, CS 280, GAM 250, \&
PHY 200
```

This project is divided into two semesters and focuses on the creation of an advanced real-time game or simulation with hardware-accelerated graphics. BSCS students work together on teams of three to five members and implement technical features, such as networking, artificial intelligence, and physics. All projects must be written with a core of C++ code and cannot use middleware, such as pre-existing physics engines, networking engines, etc. Additional topics may include advanced software architecture, 3D art pipelines, building content tools, and advanced team dynamics.

GAM 350 Project III (5 Cr.)
 Prerequisite(s): GAM 300

In this class, students work to complete the projects they began in GAM 300. Additional topics may include large project software architecture, advanced testing techniques, internships, and an introduction to resumes and interviews.

GAM 375 Advanced Project (5 Cr.)
 Prerequisite(s): GAM 350 or GAM 352

In this course, individual students work to create a highly polished advanced technology demonstration or design project. With instructor approval, students could instead polish an exceptional project from a previous class to a higher standard. Topics may include advanced user interfaces and controls, advanced special effects, advanced behaviors, and creating effective demonstrations.

GAM 390/490 Internship I/II (5 Cr.)
 Prerequisite(s): GAM 250 or GAT 251

An internship is any carefully monitored work or service experience in which an individual has intentional learning goals and reflects actively on what she or he is learning throughout the experience. It is usually a professional activity under general supervision of an experienced professional and in a job situation, which places a high degree of responsibility on the student. Internships are structured along the Internship Guidelines available in the Administration Office.

GAM 400 Project IV (5 Cr.)

Prerequisite(s): GAM 350 \& CS 250 or GAM 352 \& GAT 251

This project is divided into two semesters and focuses on the creation of an innovative game, simulation, or demo. Students may use current software and hardware technologies with instructor approval, such as web technologies, gaming consoles, mobile devices, commercial physics engines, commercial game engines, hands-free input devices, etc. These technologies can be used to implement technical features, such as 3D animation, advanced lighting and rendering, advanced 3D physics, high-performance networking, and advanced AI algorithms. Innovation can also come from the design, visuals, and/or audio components of the project. Students work independently or in teams, as appropriate to the scope of their project. Additional topics may include advanced interviewing techniques and writing effective resumes.

GAM 450 Project IV (5 Cr.)
 Prerequisite(s): GAM 400

In this class, students work to complete the projects they began in GAM 400 . Additional topics may include working in the industry, personal networking, and career strategies.

Game Design and Development Courses

GAT 399 Special Topics in Game Development (3 Cr.)
 Prerequisite(s): Permission of instructor

The content of this course may change each time it is offered. It is for the purpose of offering a new or specialized course of interest to the faculty and students that is not covered by the courses in the current catalog.

GAT 401 Rapid Prototyping (3 Cr.)
 Prerequisite(s): CS 225 or CS 176

This course introduces students to high-level tools for rapid prototyping of creative, interactive, multimedia experiences, using current technologies for making small, portable games. The design, development, and iterative processes commonly used for developing web-based game applications and other multimedia presentations are also covered.

GAT 405 Advanced Game Design (3 Cr.)

Prerequisite(s): GAT 251

This course focuses on one or more advanced game design topics based on the expertise of the instructor. Topics may include art games, music games, social games, educational games, serious games, handheld games, alternative input games, radically innovative games, and more. Students work to create one or more prototypes of a game in the areas being covered, either individually or in teams, as appropriate. Emphasis is heavily placed on innovation and students are encouraged to challenge their assumptions about what games are and what games can be.

GAT 480 Senior Portfolio (1 Cr.)
 Prerequisite(s): GAM 350 or GAM 352

This one-credit course covers advanced portfolio development. Students work to organize and present their work in online, paper, and electronic media in a professional form. Topics may include targeted resumes, non-standard cover letters, advanced interviewing techniques, interactive portfolios, and voice-over videos.

DEPARTMENT OF HUMANITIES AND SOCIAL SCIENCES

Communications Courses

COM 150 Interpersonal and Work
 Communication (3 Cr.)

Prerequisite(s): ENG 110
Students explore how their culture, gender, economic status, age and other personal characteristics influence their work communications. The course explores verbal and non-verbal communication skills in a global work environment. Students learn written communication techniques most effective for use in the technology workplace. Additionally, students explore and practice negotiation skills, both internally and externally at their workplace.

English Courses

ENG 110 Composition (3 Cr.)

Prerequisite(s): None
George Leonard, a leading writer on education, wrote, "To learn is to change. Education is a process that changes the learner." Writing is also a process that changes the writer. In this practical course in composition, students spend time generating ideas for writing, sharing and critiquing their writing and ideas, revising their ideas, and learning more about themselves as a result. The course emphasizes using writing as a tool to explore and discover their thought processes, beliefs, and world concepts. Students employ writing as a tool to develop critical thinking skills. In the process of organizing ideas and, subsequently, manifesting those ideas into various compositional styles and forms, students become conscious of the concepts which have shaped and are continually shaping their personal realities.

ENG 116 Storytelling (4 Cr.)
 Prerequisite(s): None

Storytelling is one of the oldest art forms, yet narrative- the description of an event-is also one of the most complex human endeavors. The art of narrative is endless, and we have created an almost boundless number of forms for telling stories: gesture, speech, writing, painting, photography, cinema, television, comics, newspapers, music, theater, and video games. Contemporary narrative strategies and structures share much in common with the most archaic of storytelling traditions. This course begins by investigating the psychosocial drive to tell stories, and proceeds to examine how the principal elements of narrative assert themselves in a variety of narrative genres and across different media.

Students explore the rhetoric of narrative in its many guises, and gain an appreciation for both classical and contemporary formulations of story structure. In particular, this course focuses on how narrative may be adapted across media and genres. A series of written assignments focuses on the demands of storytelling made by different genres. Such a study discloses the particular attributes of each genre, and exposes the inextricable bond between narrative form and narrative content. Additionally, the class considers several ways to interpret narrative, negotiate the temporal restrictions of commercial storytelling applications, and begin to think about the ethics of storytelling.

ENG 150 Mythology (3 Cr.)
 Prerequisite(s): ENG 110

The power of myth resides in its ability to touch the essence of our humanity and put meaning into our lives. Artists, filmmakers, game designers, and writers have appropriated elemental mythological premises and updated them to create modern myths accessible to contemporary audiences. Whether we are playing a role-playing game wherein the task is to rescue the princess and save the planet, reading the latest cyberpunk novel, or watching an animated Disney classic, the power of mythology touches our psyches. This course is an overview and analysis of cross-cultural mythology presented as poetry, prose, film, drama, and game. This class provides an in-depth discussion of the idea that myths have influenced cultures of the past and continue to inform and influence our culture today. It also examines the practical use of myth. Additionally, it emphasizes the mono-myth of the hero's journey and how a game developer may redefine the archetypal figures and adventures therein and incorporate them in a game design. One central aim of this course is to identify the many characteristics of the hero and suggest reasons why the hero is such a common figure in disparate traditions.

ENG 243 Epic Poetry (3 Cr.)

Prerequisite(s): ENG 110, ENG 116, or ENG 150
This course provides an introduction to the literary form of the epic poem. Students gain in-depth knowledge of the form and apply this experience by adapting the epic's themes and structures into their own creative endeavors, including video games. Students also produce an epic-based creative work as a final project in the course.

ENG 245 Introduction to Fiction Writing (3 Cr.)
 Prerequisite(s): ENG 110

This course provides an introduction to the study and practice of fiction writing. Students learn how to analyze characterization, plot, point of view, and other elements of fiction by reading a variety of stimulating works of short fiction. In examining the elements of fiction, students gain the insights and skills they need to write compelling fiction of their own. Students complete weekly writing assignments, as well as two full-length short stories. In addition, students learn how to give and receive constructive criticism regarding their creative work. Although the focus is on the form of the short story, there are also discussions on how narrative is employed in graphic storytelling and video games. By the end of the course, students gain confidence in their ability to analyze, to discuss, and to write short stories. They acquire a deeper understanding of the creative process, particularly as it applies to writing.

ENG 315 Story through Dialogue (4 Cr.)
 Prerequisite(s): ENG 116

Dialogue is more than just what people say; dialogue is a crucial element that animates contemporary narrative genres, including fiction, graphic novels, film and television, drama, and even video games. Through an intensive reading of fiction and critical texts, film screenings, written and oral exercises, and a series of workshops, this course aims to provide students with an introduction to the centrality of dialogue in a variety of narrative genres. One central aim of this course is to identify the characteristics of effective dialogue and the role dialogue plays in crafting action, characterization, and theme in different narrative modes. Students are also coached to consider reading texts or viewing films as a dialogic exercise-a give and take between reader/viewer and text. Additionally, students learn traditional dialogue and scripting formats and utilize them in their written work, with the eventual goal of producing a pre-production script proposal. This course offers students an opportunity to participate in a hybrid literature-writing class that provides the invaluable experience of reading closely, writing often, and reflecting upon their work in a supportive environment.

ENG 399 Special Topics in English (3 Cr.)
 Prerequisite(s): Permission of instructor

The content of this course may change each time it is offered. It is for the purpose of offering a new or specialized course of interest to the faculty and students that is not covered by the courses in the current catalog.

ENG 440 Advanced Fiction Writing (3 Cr.)
 Prerequisite(s): ENG 245, ENG 315, or ENG 340

This course builds upon the concepts and skills taught in previous writing courses. Advanced Fiction Writing offers students the opportunity to further develop their fiction-writing skills by engaging in intensive writing and regular critique of their peers' creative work. The emphasis is on refining narrative writing skills and developing individual style and voice. Students write three full-length short stories and read contemporary fiction by established authors not discussed in previous courses. Enrollment is limited to a maximum of 12 students. The limited class size will afford the intensive production schedule and frequent discussion of writing.

ENG 450 Elements of Media and Game Development (2 Cr.)

Prerequisite(s): None

Relative to modern technological media, the most important issue to consider is the nature of the interactive loop of influence between media and culture. Interactivity is one of the most powerful and important potentials of the game medium, but the term is often used with superficial understanding of its implications. This course emphasizes the nature of interactivity primarily from psychological and sociological perspectives. Students review and define interactive media using examples drawn from academic research, film, television, and games. Students have ample opportunity to contemplate and discuss how they can apply a more comprehensive understanding of interactivity in order to surpass the current limits of interactive media products.

History Courses

HIS 100 Introduction to World History I (3 Cr.)
 Prerequisite(s): None

Covering a wide range of world history (Prehistoric to Middle Ages, Western and Asian Civilizations), this course provides an overview of events, civilizations, and cultures throughout time that form major historical shifts. Students analyze a series of case studies with particular focus on governments, technology, religion, and culture, and how clashes between these (and other) themes created changes in culture, power, and civilizations. Three major themes connect several topics discussed in this course with those explored in HIS 150: issues of authority and inequality within civilizations; encounters and conflicts between civilizations; and cultural and technological exchanges within and between civilizations.

HIS 150 Introduction to World History II (3 Cr.)

Prerequisite(s): HIS 100
This course continues the topics covered in HIS 100, covering from approximately 1650 A.D. until present day (Renaissance to present day, Western and Asian Civilizations). Students analyze a series of case studies with particular focus on governments, technology, religion, and culture, and how clashes between these (and other) themes created changes in culture, power, and civilizations. Three major themes connect several topics discussed in this course with those explored in HIS 100: issues of authority and inequality within civilizations; encounters and conflicts between civilizations; and cultural and technological exchanges within and between civilizations.

Law Courses

LAW 115 Introduction to Intellectual Property and Contracts (3 Cr.)

Prerequisite(s): None
The animation and computer software industries are founded upon the principle of intellectual property. This course introduces students to the social concepts and traditions that led to the idea of intellectual property. It surveys the various international legal systems governing intellectual property, giving special consideration to Title 17 and the local statutes that govern copyrights, trademarks, and patents in the United States. Students learn fundamental issues surrounding this field, such as fair use, international relations, and economics. The course also introduces students to a basic overview of contracts, including structure, traditions, and vocabulary.

Philosophy Courses

PHL 150 Introduction to Philosophy (3 Cr.)
 Prerequisite(s): ENG 110

This course introduces some of the basic philosophical issues and questions related to everyday life. Topics include human nature (self, mind, consciousness, and freedom), values (ethics, morality, and aesthetics), knowledge (reasoning, rationality, and truth), philosophy of science (universe and origins of life), philosophical positions (naturalism, idealism, realism, pragmatism, and existentialism), and philosophy of religion (god(s) and religion). Students apply these concepts to the philosophical issues related to games and video games, specifically definitional issues, philosophical themes in games, and art in games, among others.

PHL 399 Special Topics in Philosophy (3 Cr.)
 Prerequisite(s): Permission of instructor

The content of this course may change each time it is offered. It is for the purpose of offering a new or specialized course of interest to the faculty and students that is not covered by the courses in the current catalog.

Psychology Courses

PSY 101 Introduction to Psychology (3 Cr.)
Prerequisite(s): None

This course introduces major topics in psychology, specifically as they relate to cognition and learning. These topics include perception, cognition, personality and social psychology, and biological aspects of behavior. Students are also introduced to human information processing, memory, problem solving, attention, perception, and imagery. Other topics covered may include mental representation and transformation, language processing, and concept formation.

Social Sciences Courses

SOS 115 Media and Ethics: A Social Science Perspective (3 Cr.)
 Prerequisite(s): None

This course guides students in the ethical assessment of both the processes and outcomes of social decision-making. After an introduction to basic ethical theories, students acquire an understanding of the structure of social institutions and the process through which one makes social choices. Central to the analysis is a study of ethics as a criterion for assessment of social decision-making with emphasis on the study of particular issues of social choice. The course also provides a theoretical framework within which to spot and analyze ethical issues in the media.

SOS 150 Society and Technology (3 Cr.)
 Prerequisite(s): None

This course draws on techniques and perspectives from the social sciences, humanities, and cultural studies to explore technology and change in the modern era. In particular, students examine how technology influences and is influenced by values and cultures in America and abroad. The course helps students recognize the range of consequences that technology in general, and information and communication technology (ICT) in particular, have when shaped and used by individuals, organizations, and society. Through readings, discussion, lectures, and written assignments, students become acquainted with current controversies related to the socio-cultural dimensions of technology in the "digital era."

While the course examines the impact of technologiesincluding video gaming and robotics-on the contemporary world, it also uses an historical approach to address some of the technological innovations that have most affected U.S. society in the past. The course considers how technologies are developed and sustained, and how they interact with and affect our urban culture. Specific themes likely to be addressed include technology's impact on the private and public spheres; the body and the self in cyberspace; and the criteria used to determine a technology's success, failure, and danger.

SOS 180 Race and Gender in Twenty-First Century America (3 Cr.)

Prerequisite(s): ENG 110
This course takes a close look at current debates on race, gender, and ethnicity in American society. It begins with an overview of definitions of race, gender, and ethnicity, exploring what they have meant in the past and what they mean now. Then the course examines the intersections between race, gender, and ethnicity, asking the following questions: How do race and ethnicity differ, and how are they related? What difference does race make? How are race and gender related? Where does sexual orientation fit into the discourse on gender, and how does it fit into discussions on race and ethnicity?

Current debates on race, gender, and ethnicity were highlighted by the 2008 election of the first African-American president and the ever-growing prominence of women in the highest levels of American politics. Does this mean that we have entered a post-racial era? Where exactly do we stand on women and gender-related issues? What about the place of GLBT issues in the public domain? This course explores these themes and topics.

SOS 399 Special Topics in Social Sciences (3 Cr.)

Prerequisite(s): Permission of instructor
The content of this course may change each time it is offered. It is for the purpose of offering a new or specialized course of interest to the faculty and students that is not covered by the courses in the current catalog.

DEPARTMENT OF LIFE SCIENCES

Biology Courses

BIO 100 Visual Perception (3 Cr.)
Prerequisite(s): None

This course explores the nature of human visual perception. Beginning with the physics of light and the anatomy of the human eye, the course examines how human beings process light information and use this data to survive. Additionally, students examine neurophysiology, perceptual psychology, and artistic traditions. The course gives special consideration to the modern technological and professional uses of this knowledge.

BIO 150 Human Muscular, Skeletal, and Kinetic Anatomy (3 Cr.)
 Prerequisite(s): None

This course explores the skeletal and muscular structures of the human body. Students learn to identify skeletal and muscular forms from both live models and anatomical references. Additionally, students consider terminology, structural arrangement, and kinetic function. The course gives special emphasis to adapting this knowledge to the needs of artists and animators.

BIO 200 Animal Muscular, Skeletal, and Kinetic Anatomy (3 Cr.)

Prerequisite(s): BIO 150
This course introduces the major skeletal and muscular structures of animals. Students extrapolate their knowledge of the human form to the structure and form of a variety of animal types, specifically focusing on the impact of locomotion and feeding strategies on form. Additionally, students consider terminology, structural arrangement, and kinetic function. The course also considers standard locomotion cycles and the relationship between humans and various animals. It gives special emphasis to adapting this knowledge to the needs of artists and animators.

BIO 225 Animal Motion: Sequential Limb Movement (3 Cr.)
 Prerequisite(s): None

This course introduces the major locomotion cycles with the associated skeletal and muscular structures of animals in motion. Students compare the moving bipedal, human-like form to the structure and form of a variety of animal types. Special emphasis is placed on the impact of locomotion on form. Vocabulary, structural arrangement, and kinetic function are all considered. The course also considers standard locomotion cycles of humans and various animals. Special emphasis is given to adapting this knowledge to the needs of artists and animators.

BIO 399 Special Topics in Biology (3 Cr.)

Prerequisite(s): Permission of instructor
The content of this course may change each time it is offered. It is for the purpose of offering a new or specialized course of interest to the faculty and students that is not covered by the courses in the current catalog.

DEPARTMENT OF
MATHEMATICS

Mathematics Courses

MAT 140 Linear Algebra and Geometry (4 Cr.)
Prerequisite(s): None
Credit may be received for either MAT 103 or MAT 140, but not for both.

The two main themes throughout the course are vector geometry and linear transformations. Topics from vector geometry include vector arithmetic, dot product, cross product, and representations of lines and planes in three-space. Linear transformations covered include rotations, reflections, shears and projections. Students study the matrix representations of linear transformations along with their derivations. The curriculum also presents affine geometry and affine transformations along with connections to computer graphics. This course also includes a review of relevant algebra and trigonometry concepts.

MAT 150 Calculus and Analytic Geometry I (4 Cr.)

Prerequisite(s): None
This course introduces the calculus of functions of a single real variable. The main topics include limits, differentiation, and integration. Limits include the graphical and intuitive computation of limits, algebraic properties of limits, and continuity of functions. Differentiation topics include techniques of differentiation, optimization, and applications to graphing. Integration includes Riemann sums, the definite integral, antiderivatives, and the Fundamental Theorem of Calculus.

MAT 200 Calculus and Analytic Geometry II (4 Cr.)

Prerequisite(s): MAT 150 or MAT 180
This course builds on the introduction to calculus in MAT 150. Topics in integration include applications of the integral in physics and geometry and techniques of integration. The course also covers sequences and series of real numbers, power series and Taylor series, and calculus of transcendental functions. Further topics may include a basic introduction to concepts in multivariable and vector calculus.

MAT 250 Linear Algebra (3 Cr.)
 Prerequisite(s): MAT 200 or MAT 230

This course presents the mathematical foundations of linear algebra, which includes a review of basic matrix algebra and linear systems of equations as well as basics of linear transformations in Euclidean spaces, determinants, and the Gauss-Jordan Algorithm. The more substantial part of the course begins with abstract vector spaces and the study of linear independence and bases. Further topics may include orthogonality, change of basis, general theory of linear transformations, and eigenvalues and eigenvectors. Other topics may include applications to least-squares approximations and Fourier transforms, differential equations, and computer graphics.

MAT 256 Introduction to Differential Equations (3 Cr.)
 Prerequisite(s): MAT 200 or MAT 230

This course introduces the basic theory and applications of first and second-order linear differential equations. The course emphasizes specific techniques such as the solutions to exact and separable equations, power series solutions, special functions and the Laplace transform. Applications include RLC circuits and elementary dynamical systems, and the physics of the second order harmonic oscillator equation.

MAT 258 Discrete Mathematics (3 Cr.)
 Prerequisite(s): MAT 200 or MAT 230

This course gives an introduction to several mathematical topics of foundational importance in the mathematical and computer sciences. Typically starting with propositional and first order logic, the course considers applications to methods of mathematical proof and reasoning. Further topics include basic set theory, number theory, enumeration, recurrence relations, mathematical induction, generating functions, and basic probability. Other topics may include graph theory, asymptotic analysis, and finite automata.

MAT 300 Curves and Surfaces (3 Cr.)
 Prerequisite(s): MAT 250 \& MAT 258

This course is an introduction to parameterized polynomial curves and surfaces with a view toward applications in computer graphics. It discusses both the algebraic and constructive aspects of these topics. Algebraic aspects include vector spaces of functions, special polynomial and piecewise polynomial bases, polynomial interpolation, and polar forms. Constructive aspects include the de Casteljau algorithm and the de Boor algorithm. Other topics may include an introduction to parametric surfaces and multivariate splines.

MAT 340 Probability and Statistics (3 Cr.)
 Prerequisite(s): MAT 200 or MAT 230, \& MAT 258

This course is an introduction to basic probability and statistics with an eye toward computer science and artificial intelligence. Basic topics from probability theory include sample spaces, random variables, continuous and discrete probability density functions, mean and variance, expectation, and conditional probability. Basic topics from statistics include binomial, Poisson, chi-square, and normal distributions; confidence intervals; and the Central Limit Theorem. Further topics may include fuzzy sets and fuzzy logic.

MAT 350 Advanced Curves and Surfaces (3 Cr.)

Prerequisite(s): MAT 300/500
This course is a continuation of MAT 300 with topics taken from the theory and applications of curves and surfaces. The course treats some of the material from MAT 300 in more detail, like the mathematical foundations for non-uniform rational B-spline (NURBS) curves and surfaces, knot insertion, and subdivision. Other topics may include basic differential geometry of curves and surfaces, tensor product surfaces, and multivariate splines.

MAT 351 Quaternions, Interpolation, and Animation (3 Cr.)

Prerequisite(s): MAT 300/500
This course gives an introduction to several mathematical topics of foundational importance to abstract algebra, and in particular the algebra of quaternions. Topics covered may include: operations, groups, rings, fields, vector spaces, algebras, complex numbers, quaternions, curves over the quaternionic space, interpolation techniques, splines, octonions, and Clifford algebras.

MAT 352 Wavelets (3 Cr.)
 Prerequisite(s): MAT 250 \& MAT 258

This course presents the foundations of wavelets as a method of representing and approximating functions. It discusses background material in complex linear algebra and Fourier analysis. Basic material on the discrete and continuous wavelet transforms forms the core subject matter. This includes the Haar transform, and multi-resolution analysis. Other topics may include subdivision curves and surfaces, and B-spline wavelets. Applications to computer graphics may include image editing, compression, surface reconstruction from contours, and fast methods of solving 3D simulation problems

MAT 353 Differential Geometry (3 Cr.)
 Prerequisite(s): MAT 300

This course presents an introduction to differential geometry, with emphasis on curves and surfaces in three-space. It includes background material on the differentiability of multivariable functions. Topics covered include parameterized curves and surfaces in three-space and their associated first and second fundamental forms, Gaussian curvature, the Gauss map, and an introduction to the intrinsic geometry of surfaces. Other topics may include an introduction to differentiable manifolds, Riemannian geometry, and the curvature tensor.

MAT 354 Discrete and Computational Geometry (3 Cr.)

Prerequisite(s): MAT 250 \& MAT 258
Topics covered in this course include convex hulls, triangulations, Art Gallery theorems, Voronoi diagrams, Delaunay graphs, Minkowski sums, path finding, arrangements, duality, and possibly randomized algorithms, time permitting. Throughout the course, students explore various data structures and algorithms. The analysis of these algorithms, focusing specifically on the mathematics that arises in their development and analysis is discussed. Although CS 330 is not a prerequisite, it is recommended.

MAT 355 Graph Theory (3 Cr.)
 Prerequisite(s): MAT 250 \& MAT 258

This course provides an introduction to the basic theorems and algorithms of graph theory. Topics include graph isomorphism, connectedness, Euler tours, Hamiltonian cycles, and matrix representation. Further topics may include spanning trees, coloring algorithms, planarity algorithms, and search algorithms. Applications may include network flows, graphical enumeration, and embedding of graphs in surfaces.

MAT 356 Advanced Differential Equations (3 Cr.)
 Prerequisite(s): MAT 250 \& MAT 256

This course covers the advanced theory and applications of ordinary differential equations. The first course in differential equations focused on basic prototypes, such as exact and separable equations and the second-degree harmonic oscillator equation. This course builds upon these ideas with a greater degree of generality and theory. Topics include qualitative theory, dynamical systems, calculus of variations, and applications to classical mechanics. Further topics may include chaotic systems and cellular automata. With this overview, students will be prepared to study the specific applications of differential equations to the modeling of problems in physics, engineering, and computer science.

MAT 357 Numerical Analysis (3 Cr.)
 Prerequisite(s): MAT 250 \& MAT 258

This course covers the numerical techniques arising in many areas of computer science and applied mathematics. Such techniques provide essential tools for obtaining approximate solutions to non-linear equations arising from the construction of mathematical models of real-world phenomena. Topics of study include root finding, interpolation, approximation of functions, cubic splines, integration, and differential equations. Further topics may include stability, iterative methods for solving systems of equations, eigenvalue approximation, and the fast Fourier transform.

MAT 359 Computational Algebraic Geometry (3 Cr.)

Prerequisite(s): MAT 300/500
This course introduces computational algebra as a tool to study the geometry of curves and surfaces in affine and projective space. The central objects of study are affine varieties and polynomial ideals, and the algebra-geometry dictionary captures relations between these two objects. The precise methods of studying polynomial ideals make use of monomial orderings, Grobner bases, and the Buchberger algorithm. Students have opportunities to program parts of these algorithms and to use software packages to illustrate key concepts. Further topics may include resultants, Zariski closure of algebraic sets, intersections of curves and surfaces, and multivariate polynomial splines.

MAT 361 Introduction to Number Theory and Cryptography (3 Cr .)
 Prerequisite(s): MAT 250 \& MAT 258

This course is an introduction to elementary number theory and cryptography. Among the essential tools of number theory that are covered, are divisibility and congruence, Euler's function, Fermat's little theorem, Euler's formula, the Chinese remainder theorem, powers modulo m, $k^{\text {th }}$ roots modulo m, primitive roots and indices, and quadratic reciprocity. These tools are then used in cryptography, where the course discusses encryption schemes, the role of prime numbers, security and factorization, the DES algorithm, public key encryption, and various other topics, as time allows.

MAT 364 Combinatorial Game Theory (3 Cr.) Prerequisite(s): MAT 258

Combinatorial Game Theory studies finite, two-player games in which there are no ties. Techniques from logic combinatorics and set theory are used to prove various properties of such games. Typical games include Domineering, Hackenbush, and Nim. The analysis of such games can also be used to study other more complex games like Dots and Boxes, and Go. Topics covered in this course include Conway's theory of numbers as games, impartial and partizan games, winning strategies, outcome classes and algebra of games.

MAT 365 Introduction to Topology (3 Cr.)

Prerequisite(s): MAT 250 \& MAT 258

This course introduces topology and its applications. Topics covered include topological spaces, quotient and product spaces, metric and normed spaces, connectedness, compactness, and separation axioms. Further topics may include basic algebraic topology, fixed point theorems, theory of knots, and applications to kinematics, game theory, and computer graphics.

MAT 399 Special Topics in Mathematics (3 Cr.)
 Prerequisite(s): Permission of instructor

The content of this course may change each time it is offered. It is for the purpose of offering a new or specialized course of interest to the faculty and students that is not covered by the courses in the current catalog.

DEPARTMENT OF PHYSICS

Physics Courses

PHY 115 Introduction to Applied Math and Physics (3 Cr.)
 Prerequisite(s): None

We live in a world governed by physical laws. As a result we have become accustomed to objects' motions being in accordance with these laws. This course examines the basic physics and mathematics governing natural phenomena, such as light, weight, inertia, friction, momentum, and thrust as a practical introduction to applied math and physics. Students explore geometry, trigonometry for cyclical motions, and physical equations of motion for bodies moving under the influence of forces. With these tools, students develop a broader understanding of the impact of mathematics and physics on their daily lives.

PHY 200 Motion Dynamics (3 Cr.)
 Concurrent Course(s): MAT 200 or MAT 230

This calculus-based course presents the fundamental principles of mechanics for simulation and engineering majors. Students learn the laws that govern the mechanical world and how to use these laws to form a simulated world. They examine the concepts involved with kinematics, Newtonian dynamics, work and energy, momentum, rotational motion, and statics.

PHY 200L Motion Dynamics Lab (1 Cr.) Concurrent Course(s): PHY 200

This course presents the concepts of PHY 200 in the laboratory. The experiments allow the student to experience the laws of basic physics involving linear motion, force, gravitation, conservation of energy, conservation of momentum, collisions, rotational motion, and springs. Error analysis and data reduction techniques are taught and required in experimental reports.

PHY 250 Waves, Optics, and Aerodynamics (3 Cr.)
 Prerequisite(s): PHY 200

This calculus-based course provides a fundamental understanding of fluid dynamics, oscillations and waves, optics, and thermodynamics. By understanding the physical laws governing these phenomena, students are able to implement ray casting and ray tracing algorithms, as well as create realistic flight simulators, lens effects, and many-body simulations.

PHY 250L Waves, Optics, and Thermodynamics Lab (1 Cr.)

Concurrent Course(s): PHY 250
This course presents the concepts of PHY 250 in the laboratory. The experiments allow students to experience the physical laws involving oscillations, waves, sound, interference, lift, drag, heat, optics, and entropy. Extended error analysis and statistics are taught and required in experimental reports.

PHY 270 Electricity and Magnetism (3 Cr.)
 Prerequisite(s): PHY 200

This calculus-based course studies the basic concepts underlying electrical and magnetic phenomena. It considers the following topics: atoms and free electrons; Coulomb's law; the electric field, Gauss's Law, and potential; capacitance, properties of dielectrics, current, resistance, and EMF; DC circuits and instruments, and Kirchhoff's rules; the magnetic field and magnetic forces on current-carrying conductors; magnetic field of a current; electromagnetic induction and magnetic properties of matter; alternating current; Maxwell's equations; electromagnetic waves; semiconductors and the PN junction; and photoelectric effect.

PHY 270L Electricity and Magnetism Lab (1 Cr.)
 Concurrent Course(s): PHY 270

This course presents the concepts of PHY 270 in the laboratory. The experiments allow students to experience the physical laws involving electric fields, electric potential, electric current, electric charge, capacitance, current, resistance, inductance, circuits, and magnetism. Error analysis and statistics are taught and required in experimental reports.

PHY 290 Modern Physics (3 Cr.)
 Prerequisite(s): MAT 200 or MAT 230, PHY 200, \& PHY 250 or PHY 270

The wake of modern physics has given rise to massive technological advancements that have changed our daily lives. This course covers many of the modern issues within the field and emphasizes the problem-solving nature of physics. The course is a calculus based scientific examination of topics from general relativity and quantum mechanics through nuclear physics, high-energy physics, and astrophysics.

PHY 290L Modern Physics Lab (1 Cr.)
 Concurrent Course(s): PHY 290

This course presents the concepts of PHY 290 in the laboratory. The experiments allow students to experience the discoveries of the last 100 years. The Michelson-Morley interferometer, the photoelectric effect, the electron's charge to mass ratio, the Franck-Hertz experiments, electron diffraction and the thermal band-gap. Error analysis and statistics are taught and required in experimental reports.

PHY 300 Advanced Mechanics (3 Cr.)

Prerequisite(s): CS 200, CS 250, MAT 150 or MAT 180, MAT 200 or MAT 230, MAT 250, PHY 200, \& PHY 250

This course covers the physics behind more complex mechanical interactions as well as the numerical techniques required to approximate the systems for simulations. A thorough analysis of mechanical systems through energy analysis provides the basis for the understanding of linear and rotational systems. The combination of theoretical physics and numerical methods provide students with the background for simulating physical systems with limited computational power. Topics covered include Lagrangian Dynamics, Hamilton's Equations, dynamics of rigid bodies, motion in non-inertial reference frames, the use of the inertia tensor, collision resolution, and numerical techniques including methods of approximation.

PHY 350 Physics Simulation (3 Cr.)
 Prerequisite(s): MAT 300 \& PHY 300

In this course, students gather into teams of two to three and create a physics engine with minimal interface and graphics. Weekly lectures go over the implementation of concepts covered in PHY 300 as well as collision resolution, objects on surfaces, holonomic and non-holonomic constraints, numerical approximations, and special topics that address project-specific physics.

PHY 399 Special Topics in Physics (3 Cr.) Prerequisite(s): Permission of Instructor

The content of this course may change each time it is offered. It is for the purpose of offering a new or specialized course of interest to the faculty and students that is not covered by the courses in the current catalog.

[^0]: *Please note that when "Institute" is used in this book it means "DigiPen Institute of Technology Europe-Bilbao."

[^1]: *Tuition is subject to change with six months notice. Students re-registering for a course that needs to be retaken must pay the regular course fees and are responsible for re-registering in the course. Students auditing a course must pay the regular course fees.

